Notes for “A micro Lie theory for state estimation in robotics“ - 公式详细推导 (IV)

[Title]: Notes for ``A micro Lie theory for state estimation in robotics’’ - 公式详细推导 (IV)


“A micro Lie theory for state estimation in robotics” 1 这篇论文中比较难的是几个Jacobian矩阵的推导,也是这个笔记的主要内容.

在下面推导笔记中,形如 = ( 31 ) \overset{(31)}= =(31) ⇒ ( 31 ) \overset{(31)}\Rightarrow (31) 意味着该步推导依据的是论文1 中 eq(31).

— Let’s continue —

XI About eq(180) in “Apendix D - the 3D rigid motion group S E ( 3 ) SE(3) SE(3)

参考"State Estimation for Robotics"2 ,给出了 S E ( 3 ) SE(3) SE(3) 上的 Jacobian
J l ( ξ ) = ∑ n = 0 ∞ 1 ( n + 1 ) ! ( ξ ⋏ ) n {\bf J}_l(\boldsymbol \xi) = \sum_{n=0}^{\infty}\frac{1}{(n+1)!}({\boldsymbol \xi} ^{\curlywedge}) ^n Jl(ξ)=n=0(n+1)!1(ξ)n
其中
ξ = [ ρ θ ] ∈ R 6 , ξ ⋏ = [ θ ∧ ρ ∧ 0 θ ∧ ] ∈ R 6 × 6 {\boldsymbol \xi} = \begin{bmatrix} \boldsymbol \rho \\ \boldsymbol \theta \end{bmatrix} \in \mathbb{R}^{6},\qquad {\boldsymbol \xi} ^{\curlywedge} = \begin{bmatrix} \boldsymbol \theta^{\wedge} & \boldsymbol \rho ^{\wedge}\\ 0 &\boldsymbol \theta^{\wedge} \end{bmatrix} \in \mathbb{R}^{6\times 6} ξ=[ρθ]R6,ξ=[θ0ρθ]R6×6
上式子写成
J l ( ρ , θ ) = ∑ n = 0 ∞ 1 ( n + 1 ) ! [ θ ∧ ρ ∧ 0 θ ∧ ] n = [ J l ( θ ) Q ( ρ , θ ) 0 J l ( θ ) ] (XI-1) {\bf J}_l({\boldsymbol\rho}, {\boldsymbol \theta}) = \sum_{n=0}^{\infty}\frac{1}{(n+1)!}\begin{bmatrix} \boldsymbol \theta^{\wedge} & \boldsymbol \rho ^{\wedge}\\ 0 &\boldsymbol \theta^{\wedge} \end{bmatrix}^n = \begin{bmatrix} {\bf J}_l(\boldsymbol \theta) &\bf Q({\boldsymbol\rho}, {\boldsymbol \theta})\\ 0 &{\bf J}_l(\boldsymbol \theta)\end{bmatrix}\tag{XI-1} Jl(ρ,θ)=n=0(n+1)!1[θ0ρθ]n=[Jl(θ)0Q(ρ,θ)Jl(θ)](XI-1)
为了表达清晰,本记录中 x ∨ {\boldsymbol x}^{\vee} x 记为 x ^ \hat{\boldsymbol x} x^. 展开计算 (XI-1)
[ θ ^ ρ ^ 0 θ ^ ] 0 = I 6 × 6 = [ I 3 × 3 0 0 I 3 × 3 ] [ θ ^ ρ ^ 0 θ ^ ] 1 = [ θ ^ ρ ^ 0 θ ^ ] [ θ ^ ρ ^ 0 θ ^ ] 2 = [ θ ^ ρ ^ 0 θ ^ ] [ θ ^ ρ ^ 0 θ ^ ] = [ θ ^ 2 θ ^ ρ ^ + ρ ^ θ ^ 0 θ ^ 2 ] [ θ ^ ρ ^ 0 θ ^ ] 3 = [ θ ^ 2 θ ^ ρ ^ + ρ ^ θ ^ 0 θ ^ 2 ] [ θ ^ ρ ^ 0 θ ^ ] = [ θ ^ 3 θ ^ 2 ρ ^ + θ ^ ρ ^ θ ^ + ρ ^ θ ^ 2 0 θ ^ 3 ] [ θ ^ ρ ^ 0 θ ^ ] 3 = [ θ ^ 3 θ ^ 2 ρ ^ + θ ^ ρ ^ θ ^ + ρ ^ θ ^ 2 0 θ ^ 3 ] [ θ ^ ρ ^ 0 θ ^ ] = [ θ ^ 4 θ ^ 3 ρ ^ + θ ^ 2 ρ ^ θ ^ + θ ^ ρ ^ θ ^ 2 + ρ ^ θ ^ 3 0 θ ^ 4 ] ⋮ (XI-2) \begin{aligned} \begin{bmatrix} \hat{\boldsymbol \theta} & \hat{\boldsymbol \rho} \\ 0 &\hat{\boldsymbol \theta} \end{bmatrix} ^{0} &= {\bf I}_{6\times 6} =\begin{bmatrix} I_{3\times 3}&0\\0&I_{3\times3}\end{bmatrix}\\ \begin{bmatrix} \hat{\boldsymbol \theta} & \hat{\boldsymbol \rho} \\ 0 &\hat{\boldsymbol \theta} \end{bmatrix} ^{1} &= \begin{bmatrix} \hat{\boldsymbol \theta} & \hat{\boldsymbol \rho} \\ 0 &\hat{\boldsymbol \theta} \end{bmatrix}\\ \begin{bmatrix} \hat{\boldsymbol \theta} & \hat{\boldsymbol \rho} \\ 0 &\hat{\boldsymbol \theta} \end{bmatrix} ^{2} &= \begin{bmatrix} \hat{\boldsymbol \theta} & \hat{\boldsymbol \rho} \\ 0 &\hat{\boldsymbol \theta} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol \theta} & \hat{\boldsymbol \rho} \\ 0 &\hat{\boldsymbol \theta} \end{bmatrix} = \begin{bmatrix} {\hat{\boldsymbol \theta}}^2 & \hat{\boldsymbol \theta} \hat{\boldsymbol \rho} + \hat{\boldsymbol \rho} \hat{\boldsymbol \theta} \\ 0 &{\hat{\boldsymbol \theta}}^2 \end{bmatrix}\\ \begin{bmatrix} \hat{\boldsymbol \theta} & \hat{\boldsymbol \rho} \\ 0 &\hat{\boldsymbol \theta} \end{bmatrix} ^{3} &= \begin{bmatrix} {\hat{\boldsymbol \theta}}^2 & \hat{\boldsymbol \theta} \hat{\boldsymbol \rho} + \hat{\boldsymbol \rho} \hat{\boldsymbol \theta} \\ 0 &{\hat{\boldsymbol \theta}}^2 \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol \theta} & \hat{\boldsymbol \rho} \\ 0 &\hat{\boldsymbol \theta} \end{bmatrix} = \begin{bmatrix} {\hat{\boldsymbol \theta}}^3 & \hat{\boldsymbol \theta}^{2} \hat{\boldsymbol \rho}+ \hat{\boldsymbol \theta} \hat{\boldsymbol \rho} \hat{\boldsymbol \theta} + \hat{\boldsymbol \rho} \hat{\boldsymbol \theta}^2 \\ 0 &{\hat{\boldsymbol \theta}}^3 \end{bmatrix}\\ \begin{bmatrix} \hat{\boldsymbol \theta} & \hat{\boldsymbol \rho} \\ 0 &\hat{\boldsymbol \theta} \end{bmatrix} ^{3} &= \begin{bmatrix} {\hat{\boldsymbol \theta}}^3 & \hat{\boldsymbol \theta}^{2} \hat{\boldsymbol \rho}+ \hat{\boldsymbol \theta} \hat{\boldsymbol \rho} \hat{\boldsymbol \theta} + \hat{\boldsymbol \rho} \hat{\boldsymbol \theta}^2 \\ 0 &{\hat{\boldsymbol \theta}}^3 \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol \theta} & \hat{\boldsymbol \rho} \\ 0 &\hat{\boldsymbol \theta} \end{bmatrix} = \begin{bmatrix} {\hat{\boldsymbol \theta}}^4 & \hat{\boldsymbol \theta}^{3} \hat{\boldsymbol \rho}+ \hat{\boldsymbol \theta}^{2} \hat{\boldsymbol \rho} \hat{\boldsymbol \theta} + \hat{\boldsymbol \theta} \hat{\boldsymbol \rho} \hat{\boldsymbol \theta}^2 + \hat{\boldsymbol \rho} \hat{\boldsymbol \theta}^3 \\ 0 &{\hat{\boldsymbol \theta}}^4 \end{bmatrix} \\ &\vdots \end{aligned} \tag{XI-2} [θ^0ρ^θ^]0[θ^0ρ^θ^]1[θ^0ρ^θ^]2[θ^0ρ^θ^]3[θ^0ρ^θ^]3=I6×6=[I3×300I3×3]=[θ^0ρ^θ^]=[θ^0ρ^θ^][θ^0ρ^θ^]=[θ^20θ^ρ^+ρ^θ^θ^2]=[θ^20θ^ρ^+ρ^θ^θ^2][θ^0ρ^θ^]=[θ^30θ^2ρ^+θ^ρ^θ^+ρ^θ^2θ^3]=[θ^30θ^2ρ^+θ^ρ^θ^+ρ^θ^2θ^3][θ^0ρ^θ^]=[θ^40θ^3ρ^+θ^2ρ^θ^+θ^ρ^θ^2+ρ^θ^3θ^4](XI-2)
显然

J l ( θ ) = ∑ n = 0 ∞ 1 ( n + 1 ) ! θ ^ n {\bf J}_l (\boldsymbol \theta) = \sum_{n=0}^{\infty} \frac{1}{(n+1)!} \hat {\boldsymbol \theta}^{n} Jl(θ)=n=0(n+1)!1θ^n

就是本 notes 中 VIII 部分的内容. 下面重点是 Q ( ρ , θ ) {\bf Q}( {\boldsymbol \rho}, {\boldsymbol \theta}) Q(ρ,θ) 的计算. 由 (XI-2) 归纳

Q ( ρ , θ ) = 1 2 ! ρ ^ + 1 3 ! ( θ ^ ρ ^ + ρ ^ θ ^ ) + 1 4 ! ( θ ^ 2 ρ ^ + θ ^ ρ ^ θ ^ + ρ ^ θ ^ 2 ) + 1 5 ! ( θ ^ 3 ρ ^ + θ ^ 2 ρ ^ θ ^ + θ ^ ρ ^ θ ^ 2 + ρ ^ θ ^ 3 ) + … = ∑ i + j = 0 i ⩾ 0 ,   j ⩾ 0 1 ( i + j + 2 ) ! θ ^ i ρ ^ θ ^ j + ∑ i + j = 1 i ⩾ 0 ,   j ⩾ 0 1 ( i + j + 2 ) ! θ ^ i ρ ^ θ ^ j + ∑ i + j = 2 i ⩾ 0 ,   j ⩾ 0 1 ( i + j + 2 ) ! θ ^ i ρ ^ θ ^ j + … = ∑ n = 0 ∞ ∑ m = 0 ∞ 1 ( m + n + 2 ) ! θ ^ n ρ ^ θ ^ m (XI-3) \begin{aligned} {\bf Q}({\boldsymbol \rho}, {\boldsymbol \theta}) &= \frac{1}{2!} \hat{\boldsymbol \rho} + \frac{1}{3!} ( \hat{\boldsymbol \theta} \hat{\boldsymbol \rho} + \hat{\boldsymbol \rho} \hat{\boldsymbol \theta}) + \frac{1}{4!}( \hat{\boldsymbol \theta}^{2} \hat{\boldsymbol \rho}+ \hat{\boldsymbol \theta} \hat{\boldsymbol \rho} \hat{\boldsymbol \theta} + \hat{\boldsymbol \rho} \hat{\boldsymbol \theta}^2 ) + \frac{1}{5!}(\hat{\boldsymbol \theta}^{3} \hat{\boldsymbol \rho}+ \hat{\boldsymbol \theta}^{2} \hat{\boldsymbol \rho} \hat{\boldsymbol \theta} + \hat{\boldsymbol \theta} \hat{\boldsymbol \rho} \hat{\boldsymbol \theta}^2 + \hat{\boldsymbol \rho} \hat{\boldsymbol \theta}^3)+ \ldots \\ &= \sum_{\begin{aligned}i+j =0\\ i \geqslant 0,\, j\geqslant 0\end{aligned}}^{} \frac{1}{(i+j+2)!} \hat{\boldsymbol \theta} ^{i} \hat{\boldsymbol \rho} \hat{\boldsymbol \theta}^{j} + \sum_{\begin{aligned}i+j =1\\ i \geqslant 0,\, j\geqslant 0\end{aligned}}^{} \frac{1}{(i+j+2)!} \hat{\boldsymbol \theta} ^{i} \hat{\boldsymbol \rho} \hat{\boldsymbol \theta}^{j}+ \sum_{\begin{aligned}i+j =2\\ i \geqslant 0,\, j\geqslant 0\end{aligned}}^{} \frac{1}{(i+j+2)!} \hat{\boldsymbol \theta} ^{i} \hat{\boldsymbol \rho} \hat{\boldsymbol \theta}^{j} + \ldots\\ &= \sum_{n =0}^{\infty} \sum_{m = 0}^{\infty} \frac{1}{(m+n+2)!} \hat{\boldsymbol \theta} ^{n} \hat{\boldsymbol \rho} \hat{\boldsymbol \theta}^{m} \\ \end{aligned} \tag{XI-3} Q(ρ,θ)=2!1ρ^+3!1(θ^ρ^+ρ^θ^)+4!1(θ^2ρ^+θ^ρ^θ^+ρ^θ^2)+5!1(θ^3ρ^+θ^2ρ^θ^+θ^ρ^θ^2+ρ^θ^3)+=i+j=0i0,j0(i+j+2)!1θ^iρ^θ^j+i+j=1i0,j0(i+j+2)!1θ^iρ^θ^j+i+j=2i0,j0(i+j+2)!1θ^iρ^θ^j+=n=0m=0(m+n+2)!1θ^nρ^θ^m(XI-3)

再继续归纳前,先总结以下简单规律 (都可以计算获得,复杂的可以借助符号计算软件,诸如 maxima).

θ ^ = θ [ u ] × (XI-4) \hat{\boldsymbol \theta} = \theta [\bf u]_\times \tag{XI-4} θ^=θ[u]×(XI-4)

[ u ] × 0 = I 3 × 3 [ u ] × 3 = − [ u ] × [ u ] × 4 = − [ u ] × 2 [ u ] × 5 = [ u ] × [ u ] × 6 = [ u ] × 2 [ u ] × 7 = − [ u ] × [ u ] × 8 = − [ u ] × 2 [ u ] × 9 = [ u ] × (XI-5) \begin{aligned} \left[{ \bf u}\right]_\times^{0}&={ \bf I}_{3\times 3}\qquad &[\bf u]_\times^{3}&=-[\bf u]_\times\\ [\bf u]_\times^{4}&=-[\bf u]_\times^{2}\qquad &[\bf u]_\times^{5}&=[\bf u]_\times\\ [\bf u]_\times^{6}&=[\bf u]_\times^{2}\qquad &[\bf u]_\times^{7}&=-[\bf u]_\times\\ [\bf u]_\times^{8}&=-[\bf u]_\times^{2}\qquad &[\bf u]_\times^{9}&=[\bf u]_\times\\ \end{aligned} \tag{XI-5} [u]×0[u]×4[u]×6[u]×8=I3×3=[u]×2=[u]×2=[u]×2[u]×3[u]×5[u]×7[u]×9=[u]×=[u]×=[u]×=[u]×(XI-5)

[ u ] × 2   ρ ^   [ u ] × = [ u ] ×   ρ ^   [ u ] × 2 [ u ] × 2   ρ ^   [ u ] × 2 = − [ u ] ×   ρ ^   [ u ] × (XI-6) \begin{aligned} \left[{\bf u}\right]_\times^{2} \, \hat{\boldsymbol \rho}\, [\bf u]_\times & = [{\bf u}]_\times\, \hat{\boldsymbol \rho}\, [{\bf u}]_\times^{2}\\ [{\bf u}]_\times^{2} \, \hat{\boldsymbol\rho}\, [{\bf u}]_\times^{2} & = -[{\bf u}]_\times\, \hat{\boldsymbol \rho}\, [{\bf u}]_\times \end{aligned} \tag{XI-6} [u]×2ρ^[u]×[u]×2ρ^[u]×2=[u]×ρ^[u]×2=[u]×ρ^[u]×(XI-6)

对 (XI-3) 继续展开,为了看清规律,我们展开足够多项

Q ( ρ , θ ) = ∑ n = 0 ∞ ∑ m = 0 ∞ 1 ( m + n + 2 ) ! θ ^ n ρ ^ θ ^ m =   1 2 ! ρ ^ + 1 3 ! ( θ ^ ρ ^ + ρ ^ θ ^ ) + 1 4 ! ( θ ^ 2 ρ ^ + θ ^ ρ ^ θ ^ + ρ ^ θ ^ 2 ) + 1 5 ! ( θ ^ 3 ρ ^ + θ ^ 2 ρ ^ θ ^ + θ ^ ρ ^ θ ^ 2 + ρ ^ θ ^ 3 ) + 1 6 ! ( θ ^ 4 ρ ^ + θ ^ 3 ρ ^ θ ^ + θ ^ 2 ρ ^ θ ^ 2 + θ ^ ρ ^ θ ^ 3 + ρ ^ θ ^ 4 ) + 1 7 ! ( θ ^ 5 ρ ^ + θ ^ 4 ρ ^ θ ^ + θ ^ 3 ρ ^ θ ^ 2 + θ ^ 2 ρ ^ θ ^ 3 + θ ^ ρ ^ θ ^ 4 + ρ ^ θ ^ 5 ) + 1 8 ! ( θ ^ 6 ρ ^ + θ ^ 5 ρ ^ θ ^ + θ ^ 4 ρ ^ θ ^ 2 + θ ^ 3 ρ ^ θ ^ 3 + θ ^ 2 ρ ^ θ ^ 4 + θ ^ ρ ^ θ ^ 5 + ρ ^ θ ^ 6 ) + 1 9 ! ( θ ^ 7 ρ ^ + θ ^ 6 ρ ^ θ ^ + θ ^ 5 ρ ^ θ ^ 2 + θ ^ 4 ρ ^ θ ^ 3 + θ ^ 3 ρ ^ θ ^ 4 + θ ^ 2 ρ ^ θ ^ 5 + θ ^ ρ ^ θ ^ 6 + ρ ^ θ ^ 7 )     ⋮ (XI-7) \begin{aligned} {\bf Q}({\boldsymbol\rho}, {\boldsymbol \theta}) =& \sum_{n =0}^{\infty} \sum_{m = 0}^{\infty} \frac{1}{(m+n+2)!} \hat{\boldsymbol \theta} ^{n} \hat{\boldsymbol \rho} \hat{\boldsymbol \theta}^{m} \\ \\ = &\quad\ \frac{1}{2!}\hat{\boldsymbol\rho} \\ &+ \frac{1}{3!}(\hat{\boldsymbol \theta} \hat{\boldsymbol\rho} + \hat{\boldsymbol\rho} \hat{\boldsymbol \theta} ) \\ &+ \frac{1}{4!}(\hat{\boldsymbol \theta}^2 \hat{\boldsymbol\rho} + \hat{\boldsymbol \theta} \hat{\boldsymbol\rho} \hat{\boldsymbol \theta} + \hat{\boldsymbol\rho} \hat{\boldsymbol \theta}^{2} )\\ &+ \frac{1}{5!}(\hat{\boldsymbol \theta}^3 \hat{\boldsymbol\rho} + \hat{\boldsymbol \theta}^2 \hat{\boldsymbol\rho} \hat{\boldsymbol \theta} + \hat{\boldsymbol \theta} \hat{\boldsymbol\rho} \hat{\boldsymbol \theta}^2 + \hat{\boldsymbol\rho} \hat{\boldsymbol \theta}^{3} )\\ &+ \frac{1}{6!}(\hat{\boldsymbol \theta}^4 \hat{\boldsymbol\rho} + \hat{\boldsymbol \theta}^3 \hat{\boldsymbol\rho}\hat{\boldsymbol \theta} + \hat{\boldsymbol \theta}^2 \hat{\boldsymbol\rho} \hat{\boldsymbol \theta}^2 + \hat{\boldsymbol \theta} \hat{\boldsymbol\rho} \hat{\boldsymbol \theta}^3 + \hat{\boldsymbol\rho} \hat{\boldsymbol \theta}^{4} )\\ &+ \frac{1}{7!}(\hat{\boldsymbol \theta}^5 \hat{\boldsymbol\rho} + \hat{\boldsymbol \theta}^4 \hat{\boldsymbol\rho}\hat{\boldsymbol \theta} + \hat{\boldsymbol \theta}^3 \hat{\boldsymbol\rho}\hat{\boldsymbol \theta}^2 + \hat{\boldsymbol \theta}^2 \hat{\boldsymbol\rho} \hat{\boldsymbol \theta}^3 + \hat{\boldsymbol \theta} \hat{\boldsymbol\rho} \hat{\boldsymbol \theta}^4 + \hat{\boldsymbol\rho} \hat{\boldsymbol \theta}^{5} )\\ &+ \frac{1}{8!}(\hat{\boldsymbol \theta}^6 \hat{\boldsymbol\rho} + \hat{\boldsymbol \theta}^5 \hat{\boldsymbol\rho} \hat{\boldsymbol \theta} + \hat{\boldsymbol \theta}^4 \hat{\boldsymbol\rho}\hat{\boldsymbol \theta} ^2 + \hat{\boldsymbol \theta}^3 \hat{\boldsymbol\rho}\hat{\boldsymbol \theta}^3 + \hat{\boldsymbol \theta}^2 \hat{\boldsymbol\rho} \hat{\boldsymbol \theta}^4 + \hat{\boldsymbol \theta} \hat{\boldsymbol\rho} \hat{\boldsymbol \theta}^5 + \hat{\boldsymbol\rho} \hat{\boldsymbol \theta}^{6} )\\ &+ \frac{1}{9!}(\hat{\boldsymbol \theta}^7 \hat{\boldsymbol\rho} + \hat{\boldsymbol \theta}^6 \hat{\boldsymbol\rho} \hat{\boldsymbol \theta} + \hat{\boldsymbol \theta}^5 \hat{\boldsymbol\rho} \hat{\boldsymbol \theta}^2 + \hat{\boldsymbol \theta}^4 \hat{\boldsymbol\rho}\hat{\boldsymbol \theta} ^3 + \hat{\boldsymbol \theta}^3 \hat{\boldsymbol\rho}\hat{\boldsymbol \theta}^4 + \hat{\boldsymbol \theta}^2 \hat{\boldsymbol\rho} \hat{\boldsymbol \theta}^5 + \hat{\boldsymbol \theta} \hat{\boldsymbol\rho} \hat{\boldsymbol \theta}^6 + \hat{\boldsymbol\rho} \hat{\boldsymbol \theta}^{7} )\\ &\ \, \vdots\\ \end{aligned} \tag{XI-7} Q(ρ,θ)==n=0m=0(m+n+2)!1θ^nρ^θ^m 2!1ρ^+3!1(θ^ρ^+ρ^θ^)+4!1(θ^2ρ^+θ^ρ^θ^+ρ^θ^2)+5!1(θ^3ρ^+θ^2ρ^θ^+θ^ρ^θ^2+ρ^θ^3)+6!1(θ^4ρ^+θ^3ρ^θ^+θ^2ρ^θ^2+θ^ρ^θ^3+ρ^θ^4)+7!1(θ^5ρ^+θ^4ρ^θ^+θ^3ρ^θ^2+θ^2ρ^θ^3+θ^ρ^θ^4+ρ^θ^5)+8!1(θ^6ρ^+θ^5ρ^θ^+θ^4ρ^θ^2+θ^3ρ^θ^3+θ^2ρ^θ^4+θ^ρ^θ^5+ρ^θ^6)+9!1(θ^7ρ^+θ^6ρ^θ^+θ^5ρ^θ^2+θ^4ρ^θ^3+θ^3ρ^θ^4+θ^2ρ^θ^5+θ^ρ^θ^6+ρ^θ^7) (XI-7)

利用 (XI-4) 代换 (XI-7) 中各项

Q ( ρ , θ ) = 1 2 ρ ^ + 1 3 ! θ ( [ u ] × ρ ^ + ρ ^ [ u ] × ) + 1 4 ! θ 2 ( [ u ] × 2 ρ ^ + [ u ] × ρ ^ [ u ] × + ρ ^ [ u ] × 2 ) + 1 5 ! θ 3 ( [ u ] × 3 ρ ^ + [ u ] × 2 ρ ^ [ u ] × + [ u ] × ρ ^ [ u ] × 2 + ρ ^ [ u ] × 3 ) + 1 6 ! θ 4 ( [ u ] × 4 ρ ^ + [ u ] × 3 ρ ^ [ u ] × + [ u ] × 2 ρ ^ [ u ] × 2 + [ u ] × ρ ^ [ u ] × 3 + ρ ^ [ u ] × 4 ) + 1 7 ! θ 5 ( [ u ] × 5 ρ ^ + [ u ] × 4 ρ ^ [ u ] × + [ u ] × 3 ρ ^ [ u ] × 2 + [ u ] × 2 ρ ^ [ u ] × 3 + [ u ] × ρ ^ [ u ] × 4 + ρ ^ [ u ] × 5 ) + 1 8 ! θ 6 ( [ u ] × 6 ρ ^ + [ u ] × 5 ρ ^ [ u ] × + [ u ] × 4 ρ ^ [ u ] × 2 + [ u ] × 3 ρ ^ [ u ] × 3 + [ u ] × 2 ρ ^ [ u ] × 4 + [ u ] × ρ ^ [ u ] × 5 + ρ ^ [ u ] × 6 ) + 1 9 ! θ 7 ( [ u ] × 7 ρ ^ + [ u ] × 6 ρ ^ [ u ] × + [ u ] × 5 ρ ^ [ u ] × 2 + [ u ] × 4 ρ ^ [ u ] × 3 + [ u ] × 3 ρ ^ [ u ] × 4 + [ u ] × 2 ρ ^ [ u ] × 5 + [ u ] × ρ ^ [ u ] × 6 + ρ ^ [ u ] × 7 )     ⋮ \begin{aligned} {\bf Q}({\boldsymbol\rho}, {\boldsymbol \theta}) = &\quad \frac{1}{2}\hat{\boldsymbol\rho} \\ & + \frac{1}{3!}\theta ([{\bf u}]_\times \hat{\boldsymbol\rho} + \hat{\boldsymbol\rho} [{\bf u}]_\times ) \\ & + \frac{1}{4!}\theta ^{2} ([{\bf u}]_\times ^2 \hat{\boldsymbol\rho} + [{\bf u}]_\times \hat{\boldsymbol\rho} [{\bf u}]_\times + \hat{\boldsymbol\rho} [{\bf u}]_\times ^{2} )\\ &+ \frac{1}{5!}\theta^{3} ([{\bf u}]_\times ^3 \hat{\boldsymbol\rho} + [{\bf u}]_\times ^2 \hat{\boldsymbol\rho} [{\bf u}]_\times + [{\bf u}]_\times \hat{\boldsymbol\rho} [{\bf u}]_\times ^2 + \hat{\boldsymbol\rho} [{\bf u}]_\times ^{3} )\\ &+ \frac{1}{6!}\theta^{4} ([{\bf u}]_\times ^4 \hat{\boldsymbol\rho} +[{\bf u}]_\times ^3 \hat{\boldsymbol\rho}[{\bf u}]_\times + [{\bf u}]_\times ^2 \hat{\boldsymbol\rho}[{\bf u}]_\times ^2 + [{\bf u}]_\times \hat{\boldsymbol\rho} [{\bf u}]_\times ^3 + \hat{\boldsymbol\rho}[{\bf u}]_\times ^{4} )\\ &+ \frac{1}{7!}\theta^{5} ([{\bf u}]_\times ^5 \hat{\boldsymbol\rho} + [{\bf u}]_\times ^4 \hat{\boldsymbol\rho}[{\bf u}]_\times + [{\bf u}]_\times ^3 \hat{\boldsymbol\rho}[{\bf u}]_\times ^2 + [{\bf u}]_\times ^2 \hat{\boldsymbol\rho}[{\bf u}]_\times ^3 + [{\bf u}]_\times \hat{\boldsymbol\rho}[{\bf u}]_\times ^4 + \hat{\boldsymbol\rho}[{\bf u}]_\times ^{5} )\\ &+ \frac{1}{8!}\theta^{6}([{\bf u}]_\times ^6 \hat{\boldsymbol\rho} + [{\bf u}]_\times ^5 \hat{\boldsymbol\rho} [{\bf u}]_\times + [{\bf u}]_\times ^4 \hat{\boldsymbol\rho}[{\bf u}]_\times ^2 + [{\bf u}]_\times ^3 \hat{\boldsymbol\rho}[{\bf u}]_\times ^3 + [{\bf u}]_\times ^2 \hat{\boldsymbol\rho} [{\bf u}]_\times ^4 + [{\bf u}]_\times \hat{\boldsymbol\rho} [{\bf u}]_\times ^5 + \hat{\boldsymbol\rho} [{\bf u}]_\times ^{6} )\\ &+ \frac{1}{9!}\theta^{7}([{\bf u}]_\times^7 \hat{\boldsymbol\rho} + [{\bf u}]_\times^6 \hat{\boldsymbol\rho} [{\bf u}]_\times + [{\bf u}]_\times^5 \hat{\boldsymbol\rho} [{\bf u}]_\times^2 + [{\bf u}]_\times^4 \hat{\boldsymbol\rho}[{\bf u}]_\times^3 + [{\bf u}]_\times^3 \hat{\boldsymbol\rho}[{\bf u}]_\times^4 + [{\bf u}]_\times^2 \hat{\boldsymbol\rho} [{\bf u}]_\times^5 + [{\bf u}]_\times \hat{\boldsymbol\rho} [{\bf u}]_\times^6 + \hat{\boldsymbol\rho} [{\bf u}]_\times^{7} )\\ &\ \, \vdots \end{aligned} Q(ρ,θ)=21ρ^+3!1θ([u]×ρ^+ρ^[u]×)+4!1θ2([u]×2ρ^+[u]×ρ^[u]×+ρ^[u]×2)+5!1θ3([u]×3ρ^+[u]×2ρ^[u]×+[u]×ρ^[u]×2+ρ^[u]×3)+6!1θ4([u]×4ρ^+[u]×3ρ^[u]×+[u]×2ρ^[u]×2+[u]×ρ^[u]×3+ρ^[u]×4)+7!1θ5([u]×5ρ^+[u]×4ρ^[u]×+[u]×3ρ^[u]×2+[u]×2ρ^[u]×3+[u]×ρ^[u]×4+ρ^[u]×5)+8!1θ6([u]×6ρ^+[u]×5ρ^[u]×+[u]×4ρ^[u]×2+[u]×3ρ^[u]×3+[u]×2ρ^[u]×4+[u]×ρ^[u]×5+ρ^[u]×6)+9!1θ7([u]×7ρ^+[u]×6ρ^[u]×+[u]×5ρ^[u]×2+[u]×4ρ^[u]×3+[u]×3ρ^[u]×4+[u]×2ρ^[u]×5+[u]×ρ^[u]×6+ρ^[u]×7) 

利用 (XI-5) 和 (XI-6) 继续代换

Q ( ρ , θ ) =   1 2 ρ ^ + 1 3 ! θ ( [ u ] × ρ ^ + ρ ^ [ u ] × ) + 1 4 ! θ 2 ( [ u ] × 2 ρ ^ + [ u ] × ρ ^ [ u ] × + ρ ^ [ u ] × 2 ) + 1 5 ! θ 3 ( − [ u ] × ρ ^ + [ u ] × 2 ρ ^ [ u ] × + [ u ] × ρ ^ [ u ] × 2 − ρ ^ [ u ] × ) + 1 6 ! θ 4 ( − [ u ] × 2 ρ ^ − [ u ] × ρ ^ [ u ] × − [ u ] × ρ ^ [ u ] × − [ u ] × ρ ^ [ u ] × − ρ ^ [ u ] × 2 ) + 1 7 ! θ 5 ( [ u ] × ρ ^ − [ u ] × 2 ρ ^ [ u ] × − [ u ] × ρ ^ [ u ] × 2 − [ u ] × 2 ρ ^ [ u ] × − [ u ] × ρ ^ [ u ] × 2 + ρ ^ [ u ] × ) + 1 8 ! θ 6 ( [ u ] × 2 ρ ^ + [ u ] × ρ ^ [ u ] × + [ u ] × ρ ^ [ u ] × + [ u ] × ρ ^ [ u ] × + [ u ] × ρ ^ [ u ] × + [ u ] × ρ ^ [ u ] × + ρ ^ [ u ] × 2 ) + 1 9 ! θ 7 ( − [ u ] × ρ ^ + [ u ] × 2 ρ ^ [ u ] × + [ u ] × ρ ^ [ u ] × 2 + [ u ] × 2 ρ ^ [ u ] × + [ u ] × ρ ^ [ u ] × 2 + [ u ] × 2 ρ ^ [ u ] × + [ u ] × ρ ^ [ u ] × 2 − ρ ^ [ u ] × ) ⋮ \begin{aligned} {\bf Q}({\boldsymbol\rho}, {\boldsymbol \theta}) = & \quad\ \frac{1}{2}\hat{\boldsymbol\rho} \\ &+ \frac{1}{3!}\theta ([{\bf u}]_\times \hat{\boldsymbol\rho} + \hat{\boldsymbol\rho} [{\bf u}]_\times ) \\ &+ \frac{1}{4!}\theta ^{2} ([{\bf u}]_\times ^2 \hat{\boldsymbol\rho} + [{\bf u}]_\times \hat{\boldsymbol\rho} [{\bf u}]_\times + \hat{\boldsymbol\rho} [{\bf u}]_\times ^{2} )\\ &+ \frac{1}{5!}\theta^{3} (-[{\bf u}]_\times \hat{\boldsymbol\rho} + [{\bf u}]_\times ^2 \hat{\boldsymbol\rho} [{\bf u}]_\times + [{\bf u}]_\times \hat{\boldsymbol\rho} [{\bf u}]_\times ^2 - \hat{\boldsymbol\rho} [{\bf u}]_\times )\\ &+ \frac{1}{6!}\theta^{4} (-[{\bf u}]_\times ^2 \hat{\boldsymbol\rho} - [{\bf u}]_\times \hat{\boldsymbol\rho}[{\bf u}]_\times - [{\bf u}]_\times \hat{\boldsymbol\rho} [{\bf u}]_\times - [{\bf u}]_\times \hat{\boldsymbol\rho} [{\bf u}]_\times - \hat{\boldsymbol\rho}[{\bf u}]_\times ^{2} )\\ &+ \frac{1}{7!}\theta^{5} ([{\bf u}]_\times \hat{\boldsymbol\rho} - [{\bf u}]_\times ^2 \hat{\boldsymbol\rho}[{\bf u}]_\times - [{\bf u}]_\times \hat{\boldsymbol\rho}[{\bf u}]_\times ^2 - [{\bf u}]_\times ^2 \hat{\boldsymbol\rho}[{\bf u}]_\times - [{\bf u}]_\times \hat{\boldsymbol\rho}[{\bf u}]_\times ^2 + \hat{\boldsymbol\rho}[{\bf u}]_\times )\\ &+ \frac{1}{8!}\theta^{6}([{\bf u}]_\times ^2 \hat{\boldsymbol\rho} + [{\bf u}]_\times \hat{\boldsymbol\rho} [{\bf u}]_\times + [{\bf u}]_\times \hat{\boldsymbol\rho}[{\bf u}]_\times + [{\bf u}]_\times \hat{\boldsymbol\rho}[{\bf u}]_\times + [{\bf u}]_\times \hat{\boldsymbol\rho} [{\bf u}]_\times + [{\bf u}]_\times \hat{\boldsymbol\rho} [{\bf u}]_\times + \hat{\boldsymbol\rho} [{\bf u}]_\times ^{2} )\\ &+ \frac{1}{9!}\theta^{7}( - [{\bf u}]_\times \hat{\boldsymbol\rho} + [{\bf u}]_\times^2 \hat{\boldsymbol\rho} [{\bf u}]_\times + [{\bf u}]_\times \hat{\boldsymbol\rho} [{\bf u}]_\times^2 + [{\bf u}]_\times^2 \hat{\boldsymbol\rho}[{\bf u}]_\times + [{\bf u}]_\times \hat{\boldsymbol\rho}[{\bf u}]_\times^2 + [{\bf u}]_\times^2 \hat{\boldsymbol\rho} [{\bf u}]_\times + [{\bf u}]_\times \hat{\boldsymbol\rho} [{\bf u}]_\times^2 - \hat{\boldsymbol\rho} [{\bf u}]_\times )\\ &\vdots\\ \end{aligned} Q(ρ,θ)= 21ρ^+3!1θ([u]×ρ^+ρ^[u]×)+4!1θ2([u]×2ρ^+[u]×ρ^[u]×+ρ^[u]×2)+5!1θ3([u]×ρ^+[u]×2ρ^[u]×+[u]×ρ^[u]×2ρ^[u]×)+6!1θ4([u]×2ρ^[u]×ρ^[u]×[u]×ρ^[u]×[u]×ρ^[u]×ρ^[u]×2)+7!1θ5([u]×ρ^[u]×2ρ^[u]×[u]×ρ^[u]×2[u]×2ρ^[u]×[u]×ρ^[u]×2+ρ^[u]×)+8!1θ6([u]×2ρ^+[u]×ρ^[u]×+[u]×ρ^[u]×+[u]×ρ^[u]×+[u]×ρ^[u]×+[u]×ρ^[u]×+ρ^[u]×2)+9!1θ7([u]×ρ^+[u]×2ρ^[u]×+[u]×ρ^[u]×2+[u]×2ρ^[u]×+[u]×ρ^[u]×2+[u]×2ρ^[u]×+[u]×ρ^[u]×2ρ^[u]×)

简单合并同类项

Q ( ρ , θ ) =   1 2 ρ ^ + 1 3 ! θ ( [ u ] × ρ ^ + ρ ^ [ u ] × ) + 1 4 ! θ 2 ( [ u ] × 2 ρ ^ + [ u ] × ρ ^ [ u ] × + ρ ^ [ u ] × 2 ) + 1 5 ! θ 3 ( − [ u ] × ρ ^ + [ u ] × 2 ρ ^ [ u ] × + [ u ] × ρ ^ [ u ] × 2 − ρ ^ [ u ] × ) + 1 6 ! θ 4 ( − [ u ] × 2 ρ ^ − 3 [ u ] × ρ ^ [ u ] × − ρ ^ [ u ] × 2 ) + 1 7 ! θ 5 ( [ u ] × ρ ^ − 2 [ u ] × 2 ρ ^ [ u ] × − 2 [ u ] × ρ ^ [ u ] × 2 + ρ ^ [ u ] × ) + 1 8 ! θ 6 ( [ u ] × 2 ρ ^ + 5 [ u ] × ρ ^ [ u ] × + ρ ^ [ u ] × 2 ) + 1 9 ! θ 7 ( − [ u ] × ρ ^ + 3 [ u ] × 2 ρ ^ [ u ] × + 3 [ u ] × ρ ^ [ u ] × 2 − ρ ^ [ u ] × ) ⋮ (XI-8) \begin{aligned} {\bf Q}({\boldsymbol\rho}, {\boldsymbol \theta}) = &\quad\ \frac{1}{2}\hat{\boldsymbol\rho} \\ &+ \frac{1}{3!}\theta ([{\bf u}]_\times \hat{\boldsymbol\rho} + \hat{\boldsymbol\rho} [{\bf u}]_\times ) \\ &+ \frac{1}{4!}\theta ^{2} ([{\bf u}]_\times ^2 \hat{\boldsymbol\rho} + [{\bf u}]_\times \hat{\boldsymbol\rho} [{\bf u}]_\times + \hat{\boldsymbol\rho} [{\bf u}]_\times ^{2} )\\ &+ \frac{1}{5!}\theta^{3} (-[{\bf u}]_\times \hat{\boldsymbol\rho} + [{\bf u}]_\times ^2 \hat{\boldsymbol\rho} [{\bf u}]_\times + [{\bf u}]_\times \hat{\boldsymbol\rho} [{\bf u}]_\times ^2 - \hat{\boldsymbol\rho} [{\bf u}]_\times )\\ &+ \frac{1}{6!}\theta^{4} (-[{\bf u}]_\times ^2 \hat{\boldsymbol\rho} - 3[{\bf u}]_\times \hat{\boldsymbol\rho}[{\bf u}]_\times - \hat{\boldsymbol\rho}[{\bf u}]_\times ^{2} )\\ &+ \frac{1}{7!}\theta^{5} ([{\bf u}]_\times \hat{\boldsymbol\rho} - 2[{\bf u}]_\times ^2 \hat{\boldsymbol\rho}[{\bf u}]_\times - 2 [{\bf u}]_\times \hat{\boldsymbol\rho}[{\bf u}]_\times ^2 + \hat{\boldsymbol\rho}[{\bf u}]_\times )\\ &+ \frac{1}{8!}\theta^{6}([{\bf u}]_\times ^2 \hat{\boldsymbol\rho} + 5[{\bf u}]_\times \hat{\boldsymbol\rho} [{\bf u}]_\times + \hat{\boldsymbol\rho} [{\bf u}]_\times ^{2} )\\ &+ \frac{1}{9!}\theta^{7}( - [{\bf u}]_\times \hat{\boldsymbol\rho} + 3 [{\bf u}]_\times^2 \hat{\boldsymbol\rho} [{\bf u}]_\times + 3 [{\bf u}]_\times \hat{\boldsymbol\rho} [{\bf u}]_\times^2 - \hat{\boldsymbol\rho} [{\bf u}]_\times )\\ &\vdots\\ \tag{XI-8} \end{aligned} Q(ρ,θ)= 21ρ^+3!1θ([u]×ρ^+ρ^[u]×)+4!1θ2([u]×2ρ^+[u]×ρ^[u]×+ρ^[u]×2)+5!1θ3([u]×ρ^+[u]×2ρ^[u]×+[u]×ρ^[u]×2ρ^[u]×)+6!1θ4([u]×2ρ^3[u]×ρ^[u]×ρ^[u]×2)+7!1θ5([u]×ρ^2[u]×2ρ^[u]×2[u]×ρ^[u]×2+ρ^[u]×)+8!1θ6([u]×2ρ^+5[u]×ρ^[u]×+ρ^[u]×2)+9!1θ7([u]×ρ^+3[u]×2ρ^[u]×+3[u]×ρ^[u]×2ρ^[u]×)(XI-8)
经过这一通计算整理,可以发现 (XI-8) 只剩下为数不多的不同项,所以可以对上式合并同类项
Q ( ρ , θ ) =   1 2 ρ ^ + ( 1 3 ! θ − 1 5 ! θ 3 + 1 7 ! θ 5 − 1 9 ! θ 7 +   … ) ( [ u ] × ρ ^ + ρ ^ [ u ] × ) + ( 1 4 ! θ 2 − 1 6 ! θ 4 + 1 8 ! θ 6 −   … ) ( [ u ] × 2 ρ ^ + ρ ^ [ u ] × 2 ) + ( 1 4 ! θ 2 − 3 6 ! θ 4 + 5 8 ! θ 6 −   … ) ( [ u ] × ρ ^ [ u ] × ) + ( 1 5 ! θ 3 − 2 7 ! θ 5 + 3 9 ! θ 7 −   … ) ( [ u ] × 2 ρ ^ [ u ] × + [ u ] × ρ ^ [ u ] × 2 ) = ( X I − 4 )   1 2 ρ ^ + ( 1 3 ! − 1 5 ! θ 2 + 1 7 ! θ 4 − 1 9 ! θ 6 +   … ) ( θ ^ ρ ^ + ρ ^ θ ^ ) + ( 1 4 ! − 1 6 ! θ 2 + 1 8 ! θ 4 −   … ) ( θ ^ 2 ρ ^ + ρ ^ θ ^ 2 ) + ( 1 4 ! − 3 6 ! θ 2 + 5 8 ! θ 4 −   … ) ( θ ^ ρ ^ θ ^ ) + ( 1 5 ! − 2 7 ! θ 2 + 3 9 ! θ 4 −   … ) ( θ ^ 2 ρ ^ θ ^ + θ ^ ρ ^ θ ^ 2 ) (XI-9) \begin{aligned} {\bf Q}({\boldsymbol\rho}, {\boldsymbol \theta}) = & \quad\ \frac{1}{2}\hat{\boldsymbol\rho} \\ &+(\frac{1}{3!}\theta - \frac{1}{5!}\theta^{3} + \frac{1}{7!}\theta^{5} - \frac{1}{9!}\theta^{7} +\, \ldots )([{\bf u}]_\times \hat{\boldsymbol\rho} + \hat{\boldsymbol\rho} [{\bf u}]_\times )\\ &+(\frac{1}{4!}\theta ^{2} -\frac{1}{6!}\theta^{4} + \frac{1}{8!}\theta^{6} -\, \ldots) ([{\bf u}]_\times ^2 \hat{\boldsymbol\rho} + \hat{\boldsymbol\rho} [{\bf u}]_\times ^{2})\\ &+(\frac{1}{4!}\theta ^{2} -\frac{3}{6!}\theta^{4} + \frac{5}{8!}\theta^{6} -\, \ldots)([{\bf u}]_\times \hat{\boldsymbol\rho}[{\bf u}]_\times) \\ &+ (\frac{1}{5!}\theta^{3} - \frac{2}{7!}\theta^{5} + \frac{3}{9!}\theta^{7} - \, \ldots ) ([{\bf u}]_\times ^2 \hat{\boldsymbol\rho} [{\bf u}]_\times + [{\bf u}]_\times \hat{\boldsymbol\rho} [{\bf u}]_\times ^2)\\ \overset{(\small \rm XI-4)}= & \quad\ \frac{1}{2}\hat{\boldsymbol\rho} \\ &+ (\frac{1}{3!} - \frac{1}{5!}\theta^{2} + \frac{1}{7!}\theta^{4} - \frac{1}{9!}\theta^{6} +\, \ldots )(\hat{\boldsymbol \theta} \hat{\boldsymbol\rho} + \hat{\boldsymbol\rho}\hat{\boldsymbol \theta} )\\ &+(\frac{1}{4!}-\frac{1}{6!}\theta^{2} + \frac{1}{8!}\theta^{4} -\, \ldots) (\hat{\boldsymbol \theta} ^2 \hat{\boldsymbol\rho} + \hat{\boldsymbol\rho} \hat{\boldsymbol \theta}^2)\\ &+ (\frac{1}{4!} -\frac{3}{6!}\theta^{2} + \frac{5}{8!}\theta^{4} -\, \ldots)(\hat{\boldsymbol \theta} \hat{\boldsymbol\rho}\hat{\boldsymbol \theta}) \\ & + (\frac{1}{5!} - \frac{2}{7!}\theta^{2} + \frac{3}{9!}\theta^{4} - \, \ldots ) (\hat{\boldsymbol \theta} ^2 \hat{\boldsymbol\rho} \hat{\boldsymbol \theta} + \hat{\boldsymbol \theta} \hat{\boldsymbol\rho} \hat{\boldsymbol \theta}^2)\\ \end{aligned} \tag{XI-9} Q(ρ,θ)==(XI4) 21ρ^+(3!1θ5!1θ3+7!1θ59!1θ7+)([u]×ρ^+ρ^[u]×)+(4!1θ26!1θ4+8!1θ6)([u]×2ρ^+ρ^[u]×2)+(4!1θ26!3θ4+8!5θ6)([u]×ρ^[u]×)+(5!1θ37!2θ5+9!3θ7)([u]×2ρ^[u]×+[u]×ρ^[u]×2) 21ρ^+(3!15!1θ2+7!1θ49!1θ6+)(θ^ρ^+ρ^θ^)+(4!16!1θ2+8!1θ4)(θ^2ρ^+ρ^θ^2)+(4!16!3θ2+8!5θ4)(θ^ρ^θ^)+(5!17!2θ2+9!3θ4)(θ^2ρ^θ^+θ^ρ^θ^2)(XI-9)
另外已知 Talyor Expansion
s i n θ = θ − 1 3 ! θ 3 + 1 5 ! θ 5 − 1 7 ! θ 7 + 1 9 ! θ 9 −   … {\rm sin} \theta = \theta - \frac{1}{3!}\theta^{3} + \frac{1}{5!}\theta^{5} -\frac{1}{7!}\theta^{7} + \frac{1}{9!}\theta^{9}-\, \ldots sinθ=θ3!1θ3+5!1θ57!1θ7+9!1θ9

c o s θ = 1 − 1 2 ! θ 2 + 1 4 ! θ 4 − 1 6 ! θ 6 + 1 8 ! θ 8 −   … {\rm cos} \theta = 1 -\frac{1}{2!}\theta^{2} + \frac{1}{4!}\theta^{4} - \frac{1}{6!}\theta^{6} + \frac{1}{8!}\theta^{8} -\, \ldots cosθ=12!1θ2+4!1θ46!1θ6+8!1θ8

反过来对待验证的 eq(180) 进行展开
θ − s i n θ θ 3 = θ − ( θ − 1 3 ! θ 3 + 1 5 ! θ 5 − 1 7 ! θ 7 + 1 9 ! θ 9 −   … ) θ 3 = 1 3 ! θ 3 − 1 5 ! θ 5 + 1 7 ! θ 7 − 1 9 ! θ 9 +   … θ 3 = 1 3 ! − 1 5 ! θ 2 + 1 7 ! θ 4 − 1 9 ! θ 6 +   … (XI-10) \begin{aligned} \frac{\theta-{\rm sin}\theta}{\theta^3} &= \frac{\theta -(\theta - \frac{1}{3!}\theta^{3} + \frac{1}{5!}\theta^{5} -\frac{1}{7!}\theta^{7} + \frac{1}{9!}\theta^{9}- \, \ldots)} {\theta^3} \\ &= \frac{\frac{1}{3!}\theta^{3} - \frac{1}{5!}\theta^{5} + \frac{1}{7!}\theta^{7} - \frac{1}{9!}\theta^{9}+ \, \ldots}{\theta^3} \\ & = \frac{1}{3!} - \frac{1}{5!}\theta^{2} + \frac{1}{7!}\theta^{4} - \frac{1}{9!}\theta^{6}+ \, \ldots \end{aligned} \tag{XI-10} θ3θsinθ=θ3θ(θ3!1θ3+5!1θ57!1θ7+9!1θ9)=θ33!1θ35!1θ5+7!1θ79!1θ9+=3!15!1θ2+7!1θ49!1θ6+(XI-10)

− 1 − θ 2 2 − c o s θ θ 4 = − 1 − 1 2 θ 2 − ( 1 − 1 2 ! θ 2 + 1 4 ! θ 4 − 1 6 ! θ 6 + 1 8 ! θ 8 −   … ) θ 4 = 1 4 ! θ 4 − 1 6 ! θ 6 + 1 8 ! θ 8 −   … θ 4 = 1 4 ! − 1 6 ! θ 2 + 1 8 ! θ 4 −   … (XI-11) \begin{aligned} -\frac{1-\frac{\theta^2}{2} - {\rm cos}\theta}{\theta^4} & =-\frac{1- \frac{1}{2} \theta^2 - (1 -\frac{1}{2!}\theta^{2} + \frac{1}{4!}\theta^{4} - \frac{1}{6!}\theta^{6} + \frac{1}{8!}\theta^{8} -\, \ldots)}{\theta^4}\\ &=\frac{ \frac{1}{4!}\theta^{4} - \frac{1}{6!}\theta^{6} + \frac{1}{8!}\theta^{8} - \, \ldots }{\theta^4}\\ &=\frac{1}{4!} - \frac{1}{6!}\theta^{2} + \frac{1}{8!}\theta^{4} - \, \ldots \\ \end{aligned} \tag{XI-11} θ412θ2cosθ=θ4121θ2(12!1θ2+4!1θ46!1θ6+8!1θ8)=θ44!1θ46!1θ6+8!1θ8=4!16!1θ2+8!1θ4(XI-11)

θ − s i n θ θ 3 ⋅ 1 − 1 − θ 2 2 − c o s θ θ 4 ⋅ ( − 3 ) = 3 − 1 2 θ 2 − θ s i n θ − 3 c o s θ θ 4 = 3 − 1 2 θ 2 − θ ( θ − 1 3 ! θ 3 + 1 5 ! θ 5 − 1 7 ! θ 7 +   … ) − 3 ( 1 − 1 2 ! θ 2 + 1 4 ! θ 4 − 1 6 ! θ 6 + 1 8 ! θ 8 −   … ) θ 4 = 3 − 1 2 θ 2 − θ 2 + 1 3 ! θ 4 − 1 5 ! θ 6 + 1 7 ! θ 8 −   … − 3 + 3 2 ! θ 2 − 3 4 ! θ 4 + 3 6 ! θ 6 − 3 8 ! θ 8 +   … ) θ 4 = 1 4 ! θ 4 − 3 6 ! θ 6 + 5 8 ! θ 8 −   … θ 4 = 1 4 ! − 3 6 ! θ 2 + 5 8 ! θ 4 −   … (XI-12) \begin{aligned} \frac{\theta-{\rm sin}\theta}{\theta^3} \cdot 1 - \frac{1-\frac{\theta^2}{2} - {\rm cos}\theta}{\theta^4}\cdot (-3) & = \frac{3-\frac{1}{2}\theta^2 -\theta {\rm sin}\theta -3 {\rm cos}\theta}{\theta^4} \\ &=\frac{3-\frac{1}{2}\theta^2 -\theta (\theta - \frac{1}{3!}\theta^{3} + \frac{1}{5!}\theta^{5} -\frac{1}{7!}\theta^{7} + \, \ldots) -3 (1 -\frac{1}{2!}\theta^{2} + \frac{1}{4!}\theta^{4} - \frac{1}{6!}\theta^{6} + \frac{1}{8!}\theta^{8} -\, \ldots)}{\theta^4}\\ &=\frac{3-\frac{1}{2}\theta^2 -\theta^2 + \frac{1}{3!}\theta^{4} - \frac{1}{5!}\theta^{6} + \frac{1}{7!}\theta^{8} - \, \ldots - 3 +\frac{3}{2!}\theta^{2} - \frac{3}{4!}\theta^{4} + \frac{3}{6!}\theta^{6} - \frac{3}{8!}\theta^{8}+\, \ldots)}{\theta^4}\\ &=\frac{ \frac{1}{4!}\theta^{4} - \frac{3}{6!}\theta^{6} + \frac{5}{8!}\theta^{8} - \, \ldots }{\theta^4}\\ &=\frac{1}{4!} - \frac{3}{6!}\theta^{2} + \frac{5}{8!}\theta^{4} - \, \ldots \\ \end{aligned} \tag{XI-12} θ3θsinθ1θ412θ2cosθ(3)=θ4321θ2θsinθ3cosθ=θ4321θ2θ(θ3!1θ3+5!1θ57!1θ7+)3(12!1θ2+4!1θ46!1θ6+8!1θ8)=θ4321θ2θ2+3!1θ45!1θ6+7!1θ83+2!3θ24!3θ4+6!3θ68!3θ8+)=θ44!1θ46!3θ6+8!5θ8=4!16!3θ2+8!5θ4(XI-12)

− 1 2 ( 1 − θ 2 2 − c o s θ θ 4 − 3 θ − s i n θ − θ 3 6 θ 5 ) = − 1 2 ( − 1 4 ! + 1 6 ! θ 2 − 1 8 ! θ 4 +   … − 3 − 1 5 ! θ 5 + 1 7 ! θ 7 − 1 9 ! θ 9 +   … θ 5 ) = − 1 2 ( − 1 4 ! + 1 6 ! θ 2 − 1 8 ! θ 4 +   … + 3 5 ! − 3 7 ! θ 2 + 3 9 ! θ 4 −   … ) = − 1 2 ( − 2 5 ! + 4 7 ! θ 2 − 6 9 ! θ 4 +   … ) = 1 5 ! − 2 7 ! θ 2 + 3 9 ! θ 4 −   … (XI-13) \begin{aligned} -\frac{1}{2}\left( \frac{1-\frac{\theta^2}{2} -{\rm cos}\theta}{\theta^4} - 3 \frac{\theta -{\rm sin} \theta -\frac{\theta^3}{6}}{\theta^{5}}\right) &= -\frac{1}{2}\left( -\frac{1}{4!} + \frac{1}{6!}\theta^{2} - \frac{1}{8!}\theta^{4} + \, \ldots - 3 \frac{ - \frac{1}{5!}\theta^{5} + \frac{1}{7!}\theta^{7} - \frac{1}{9!}\theta^{9}+ \, \ldots }{\theta^{5}}\right) \\ &= -\frac{1}{2}\left( -\frac{1}{4!} + \frac{1}{6!}\theta^{2} - \frac{1}{8!}\theta^{4} + \, \ldots + \frac{3}{5!} - \frac{3}{7!}\theta^{2} + \frac{3}{9!}\theta^{4} - \, \ldots \right) \\ &= -\frac{1}{2}\left( -\frac{2}{5!} + \frac{4}{7!}\theta^{2} - \frac{6}{9!}\theta^{4} + \, \ldots \right) \\ &= \frac{1}{5!} - \frac{2}{7!}\theta^{2} + \frac{3}{9!}\theta^{4} - \, \ldots \end{aligned} \tag{XI-13} 21(θ412θ2cosθ3θ5θsinθ6θ3)=21(4!1+6!1θ28!1θ4+3θ55!1θ5+7!1θ79!1θ9+)=21(4!1+6!1θ28!1θ4++5!37!3θ2+9!3θ4)=21(5!2+7!4θ29!6θ4+)=5!17!2θ2+9!3θ4(XI-13)

最后,将 (XI-10) ~ (XI-13) 分别代入 (XI-9) 得到
Q ( ρ , θ ) =   1 2 ρ ^ + ( 1 3 ! − 1 5 ! θ 2 + 1 7 ! θ 4 − 1 9 ! θ 6 +   … ) ( θ ^ ρ ^ + ρ ^ θ ^ ) + ( 1 4 ! − 1 6 ! θ 2 + 1 8 ! θ 4 −   … ) ( θ ^ 2 ρ ^ + ρ ^ θ ^ 2 ) + ( 1 4 ! − 3 6 ! θ 2 + 5 8 ! θ 4 −   … ) ( θ ^ ρ ^ θ ^ ) + ( 1 5 ! − 2 7 ! θ 2 + 3 9 ! θ 4 −   … ) ( θ ^ 2 ρ ^ θ ^ + θ ^ ρ ^ θ ^ 2 ) =   1 2 ρ ^ + θ − s i n θ θ 3   ( θ ^ ρ ^ + ρ ^ θ ^ ) − 1 − θ 2 2 − c o s θ θ 4   ( θ ^ 2 ρ ^ + ρ ^ θ ^ 2 ) + [ θ − s i n θ θ 3 ⋅ 1 − 1 − θ 2 2 − c o s θ θ 4 ⋅ ( − 3 ) ]   ( θ ^ ρ ^ θ ^ ) − 1 2 ( 1 − θ 2 2 − c o s θ θ 4 − 3 θ − s i n θ − θ 3 6 θ 5 ) ( θ ^ 2 ρ ^ θ ^ + θ ^ ρ ^ θ ^ 2 ) =   1 2 ρ ^ + θ − s i n θ θ 3   ( θ ^ ρ ^ + ρ ^ θ ^ + θ ^ ρ ^ θ ^ ) − 1 − θ 2 2 − c o s θ θ 4   ( θ ^ 2 ρ ^ + ρ ^ θ ^ 2 − 3 θ ^ ρ ^ θ ^ ) − 1 2 ( 1 − θ 2 2 − c o s θ θ 4 − 3 θ − s i n θ − θ 3 6 θ 5 ) ( θ ^ 2 ρ ^ θ ^ + θ ^ ρ ^ θ ^ 2 ) \begin{aligned} {\bf Q}({\boldsymbol\rho}, {\boldsymbol \theta}) = & \quad\ \frac{1}{2}\hat{\boldsymbol\rho} \\ &+ (\frac{1}{3!} - \frac{1}{5!}\theta^{2} + \frac{1}{7!}\theta^{4} - \frac{1}{9!}\theta^{6} +\, \ldots )(\hat{\boldsymbol \theta} \hat{\boldsymbol\rho} + \hat{\boldsymbol\rho}\hat{\boldsymbol \theta} )\\ &+(\frac{1}{4!}-\frac{1}{6!}\theta^{2} + \frac{1}{8!}\theta^{4} -\, \ldots) (\hat{\boldsymbol \theta} ^2 \hat{\boldsymbol\rho} + \hat{\boldsymbol\rho} \hat{\boldsymbol \theta}^2)\\ &+ (\frac{1}{4!} -\frac{3}{6!}\theta^{2} + \frac{5}{8!}\theta^{4} -\, \ldots)(\hat{\boldsymbol \theta} \hat{\boldsymbol\rho}\hat{\boldsymbol \theta}) \\ & + (\frac{1}{5!} - \frac{2}{7!}\theta^{2} + \frac{3}{9!}\theta^{4} - \, \ldots ) (\hat{\boldsymbol \theta} ^2 \hat{\boldsymbol\rho} \hat{\boldsymbol \theta} + \hat{\boldsymbol \theta} \hat{\boldsymbol\rho} \hat{\boldsymbol \theta}^2)\\ = & \quad\ \frac{1}{2}\hat{\boldsymbol\rho} \\ &+ \frac{\theta-{\rm sin}\theta}{\theta^3}\,(\hat{\boldsymbol \theta} \hat{\boldsymbol\rho} + \hat{\boldsymbol\rho}\hat{\boldsymbol \theta} )\\ &-\frac{1-\frac{\theta^2}{2} - {\rm cos}\theta}{\theta^4}\, (\hat{\boldsymbol \theta} ^2 \hat{\boldsymbol\rho} + \hat{\boldsymbol\rho} \hat{\boldsymbol \theta}^2)\\ &+ \left[\frac{\theta-{\rm sin}\theta}{\theta^3} \cdot 1 - \frac{1-\frac{\theta^2}{2} - {\rm cos}\theta}{\theta^4}\cdot (-3)\right]\ (\hat{\boldsymbol \theta} \hat{\boldsymbol\rho}\hat{\boldsymbol \theta}) \\ & -\frac{1}{2}\left( \frac{1-\frac{\theta^2}{2} -{\rm cos}\theta}{\theta^4} - 3 \frac{\theta -{\rm sin} \theta -\frac{\theta^3}{6}}{\theta^{5}}\right) (\hat{\boldsymbol \theta} ^2 \hat{\boldsymbol\rho} \hat{\boldsymbol \theta} + \hat{\boldsymbol \theta} \hat{\boldsymbol\rho} \hat{\boldsymbol \theta}^2)\\ = & \quad\ \frac{1}{2}\hat{\boldsymbol\rho} \\ &+ \frac{\theta-{\rm sin}\theta}{\theta^3}\,(\hat{\boldsymbol \theta} \hat{\boldsymbol\rho} + \hat{\boldsymbol\rho}\hat{\boldsymbol \theta} + \hat{\boldsymbol \theta} \hat{\boldsymbol\rho}\hat{\boldsymbol \theta} )\\ &-\frac{1-\frac{\theta^2}{2} - {\rm cos}\theta}{\theta^4}\, (\hat{\boldsymbol \theta} ^2 \hat{\boldsymbol\rho} + \hat{\boldsymbol\rho} \hat{\boldsymbol \theta}^2 -3\hat{\boldsymbol \theta} \hat{\boldsymbol\rho}\hat{\boldsymbol \theta} )\\ & -\frac{1}{2}\left( \frac{1-\frac{\theta^2}{2} -{\rm cos}\theta}{\theta^4} - 3 \frac{\theta -{\rm sin} \theta -\frac{\theta^3}{6}}{\theta^{5}}\right) (\hat{\boldsymbol \theta} ^2 \hat{\boldsymbol\rho} \hat{\boldsymbol \theta} + \hat{\boldsymbol \theta} \hat{\boldsymbol\rho} \hat{\boldsymbol \theta}^2)\\ \end{aligned} Q(ρ,θ)=== 21ρ^+(3!15!1θ2+7!1θ49!1θ6+)(θ^ρ^+ρ^θ^)+(4!16!1θ2+8!1θ4)(θ^2ρ^+ρ^θ^2)+(4!16!3θ2+8!5θ4)(θ^ρ^θ^)+(5!17!2θ2+9!3θ4)(θ^2ρ^θ^+θ^ρ^θ^2) 21ρ^+θ3θsinθ(θ^ρ^+ρ^θ^)θ412θ2cosθ(θ^2ρ^+ρ^θ^2)+[θ3θsinθ1θ412θ2cosθ(3)] (θ^ρ^θ^)21(θ412θ2cosθ3θ5θsinθ6θ3)(θ^2ρ^θ^+θ^ρ^θ^2) 21ρ^+θ3θsinθ(θ^ρ^+ρ^θ^+θ^ρ^θ^)θ412θ2cosθ(θ^2ρ^+ρ^θ^23θ^ρ^θ^)21(θ412θ2cosθ3θ5θsinθ6θ3)(θ^2ρ^θ^+θ^ρ^θ^2)
最终完成 eq(180) 闭形式的计算.

— End —

<div id="ref-1"></div>
[1] Joan Solà, Jeremie Deray, Dinesh Atchuthan, "A micro Lie theory for state estimation in robotics", arXiv:1812.01537 [cs.RO]

<div id="ref-2"></div>
[2] Timothy D. Barfoot, "State Estimation for Robotics", Cambridge University Press, 2017

<div id="ref-3"></div>
[3] Bernoulli Number, https://mathworld.wolfram.com/BernoulliNumber.html

<div id="ref-4"></div>
[4] 双曲三角函数与三角函数泰勒展开式, https://zhuanlan.zhihu.com/p/166135510

<div id="ref-5"></div>
[5] 三角函数半角公式, https://zhidao.baidu.com/question/1245914655285565579.html

<div id="ref-6"></div>
[6] Gregory S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups, Volume 2", Birkhäuser Boston, MA, 2011

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值