文章目录
GS3D: An Efficient 3D Object Detection Framework for Autonomous Driving
该文章使用单目视觉做3D object detection。由于用单目视觉固有的缺陷,丢失了一维信息,所以文章中用了很多统计值。
GS3D
2D Detection and Orientation Prediction
修改Faster RCNN,在RoI feature之后又加入了orientation的预测。来预测车的朝向。
Guidance Generation
大量的使用对数据集的统计量。首先使用从数据集统计物体的尺寸(w, h, l)。然后利用2D box的上边边缘的中心点,和下边边缘的中心点(要加上从数据集统计的一个偏差值)来估计3D box的上表面中心点和下表面中心点。然后根据上下表面中心点的距离差和统计的物体的高度来计算物体的深度信息。转角的预测是通过上一步预测的角度和物体的中心确定的。到这一步,3D box的所有参数就都有了。
Surface Feature Extraction
这一步相当于优化这个box。预测的3D box有3个面是是在2D image可见的,然后根据这3个面在2D image上的投影提取feature,其实与align pooling的做法是一