【论文阅读】【三维目标检测】GS3D: An Efficient 3D Object Detection Framework for Autonomous Driving

GS3D是一种使用单目视觉进行3D对象检测的方法,通过2D检测和方向预测,结合统计信息生成指导,提取表面特征,并采用精细化方法优化3D框,最终实现对自动驾驶场景中的三维目标高效检测。该框架利用质量感知损失来确保高质量检测框的得分更高。
摘要由CSDN通过智能技术生成

GS3D: An Efficient 3D Object Detection Framework for Autonomous Driving
该文章使用单目视觉做3D object detection。由于用单目视觉固有的缺陷,丢失了一维信息,所以文章中用了很多统计值。

GS3D

2D Detection and Orientation Prediction

修改Faster RCNN,在RoI feature之后又加入了orientation的预测。来预测车的朝向。
在这里插入图片描述

Guidance Generation

大量的使用对数据集的统计量。首先使用从数据集统计物体的尺寸(w, h, l)。然后利用2D box的上边边缘的中心点,和下边边缘的中心点(要加上从数据集统计的一个偏差值)来估计3D box的上表面中心点和下表面中心点。然后根据上下表面中心点的距离差和统计的物体的高度来计算物体的深度信息。转角的预测是通过上一步预测的角度和物体的中心确定的。到这一步,3D box的所有参数就都有了。

Surface Feature Extraction

这一步相当于优化这个box。预测的3D box有3个面是是在2D image可见的,然后根据这3个面在2D image上的投影提取feature,其实与align pooling的做法是一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值