【人工智能】常用结构化提示词框架:ICIO框架

一、ICIO框架定义

ICIO框架,是一种用于指导人工智能系统理解和处理复杂任务的结构化方法。
ICIO框架,旨在确保AI系统能够准确、高效地响应用户需求。

二、ICIO框架历史背景和起源

ICIO框架源于对自然语言处理(NLP)和机器学习领域中提示工程(prompt engineering)的需求。
随着AI技术的进步,特别是大模型的发展,需要更精细的方法来引导模型的输出,以适应不同的应用场景。
ICIO框架的提出,是为了弥补传统输入输出交互方式的不足,提高AI系统的理解和生成能力。

三、ICIO框架的主要思想及核心概念

ICIO框架的核心思想在于,通过明确界定任务的各个方面,可以显著提升AI系统的性能。

ICIO框架,由四个关键组件/核心概念组成:

3.1 Input(输入):向AI提供的原始信息或数据

这部分提供了需要AI处理的核心内容或原始材料,可以是文本、图像、语音等各种形式的数据。
Input应该尽量简洁、完整地描述任务涉及的关键信息。

3.2 Context(上下文):与Input相关联的背景信息,帮助AI理解任务

<think>好的,我现在需要处理用户关于常用智能体提示词及其应用场景的问题。首先,我需要明确用户的需求,他们可能希望了解不同类型的智能体所使用的提示词结构以及这些提示词在具体场景中的应用方式。 根据用户提供的引用资料,特别是引用[1]和[2],提示词是AGI的基础,而ICIO框架是一个常用结构化提示词框架,包括上下文、输入、指令和输出四个部分。我的任务是将这些信息整理出来,并结合实际应用场景进行说明。 首先,我需要回顾ICIO框架的各个组成部分,确保每个部分都有清晰的解释,比如上下文(In-Context)的作用是设定背景,输入(Input)是提供具体的数据或问题,指令(Instruction)是明确任务,输出(Output)是规定格式和质量要求。然后,我需要列举常见的智能体类型,如问答机器人、翻译工具、内容生成器等,并分别说明它们使用的提示词结构和应用场景。 接下来,我需要检查是否有其他常用提示词框架,比如CRISPE或BROKE,这些框架可能在不同场景下被使用。例如,CRISPE框架包含能力和角色、步骤、意图、风格和个性、示例,适用于需要详细步骤和风格控制的场景。BROKE框架则涉及背景、角色、目标、关键结果和示例,适合项目管理类智能体。 此外,用户可能还关心如何设计有效的提示词,所以需要提供设计原则,比如清晰具体、分步拆解、提供示例、风格约束等。这些原则能帮助用户优化他们的提示词,提升智能体的表现。 最后,要确保回答结构清晰,每个部分有明确的标题和要点,并自然融入引用标记。同时,生成的相关问题需要覆盖用户可能进一步询问的方向,比如具体框架的比较、设计技巧或实际案例。 现在需要验证所有信息是否正确,特别是框架的细节和应用场景是否准确。例如,确认ICIO框架中的每个部分是否描述正确,是否有遗漏或错误。同时,确保引用的来源正确标记,符合用户提供的引用格式。 总结步骤: 1. 介绍提示词的重要性,引用[1]。 2. 详细解释ICIO框架的四个部分,引用[2]。 3. 列举其他常用框架如CRISPE和BROKE。 4. 提供不同智能体的应用场景及对应提示词示例。 5. 给出提示词设计原则。 6. 生成相关问题供用户进一步探索。 需要确保语言简洁,符合中文表达习惯,避免技术术语过于晦涩,同时保持专业性。检查是否有LaTeX格式错误,确保所有数学表达式和独立公式正确使用$...$和$$...$$,但根据当前内容,可能较少涉及数学公式,但仍需注意用户提供的示例中的格式要求。</think>### 常用智能体提示词框架及应用场景 #### 1. **提示词的核心作用** - 提示词是引导智能体(如语言模型)执行任务的核心指令,通过结构化描述任务背景、输入、步骤和输出要求,优化生成结果的质量和相关性[^1][^2]。 #### 2. **常用提示词框架** **a. ICIO框架** - **In-Context (上下文)**:设定任务背景和目标,例如:“你是一名医疗顾问,需要根据患者症状提供初步建议。” - **Input (输入)**:明确输入数据的格式,例如:“输入为患者的体温、咳嗽频率和病史。” - **Instruction (指令)**:分步骤定义任务,例如: 1. 分析症状是否属于普通感冒或流感; 2. 列出3条非处方药建议; 3. 标注需立即就医的情况。 - **Output (输出)**:规定输出形式,例如:“使用Markdown列表,每条建议不超过20字。” **b. CRISPE框架** - **Capacity & Role (能力与角色)**:定义智能体角色,如“你是一名精通多国语言的翻译专家”。 - **Step (步骤)**:分步操作,例如:“先将中文翻译为英文,再润色为学术风格。” - **Intent (意图)**:说明任务目标,例如:“确保翻译结果符合期刊论文要求。” - **Style & Personality (风格与个性)**:限定语言风格,如“正式、简洁、避免口语化”。 - **Example (示例)**:提供输入输出样例,增强准确性。 **c. BROKE框架** - **Background (背景)**:任务背景,例如:“开发一个天气查询机器人。” - **Role (角色)**:智能体身份,如“你是气象数据分析助手”。 - **Objective (目标)**:核心目标,例如:“根据用户位置返回未来24小时天气。” - **Key Results (关键结果)**:量化输出要求,如“包含温度、降水概率、风速”。 - **Example (示例)**:演示交互过程。 #### 3. **典型应用场景与示例** - **问答机器人** ```text 上下文:你是一名历史知识库助手。 输入:用户提问“第二次世界大战的转折点是什么?” 指令:1. 用1句话回答关键事件;2. 补充时间、地点和影响。 输出:使用加粗标题和分点列表。 ``` 应用场景:教育、信息检索。 - **翻译工具** ```text 角色:专业文档翻译员。 输入:中文技术文档段落。 步骤:1. 直译保留原意;2. 调整术语符合英文惯例。 输出:保留原有段落换行,术语表附后。 ``` 应用场景:跨语言协作、技术文档本地化。 - **内容生成器** ```text 背景:为社交媒体生成广告文案。 风格:口语化、包含表情符号和行动号召。 示例输入:产品名称“健康手环”,特点“心率监测、续航30天”。 示例输出:“🔥全新健康手环上线!24小时心率监测,30天超长续航,点击抢购→” ``` 应用场景:营销文案、社交媒体运营。 #### 4. **提示词设计原则** - **清晰具体**:避免模糊指令,如“优化这段代码”改为“将Python循环替换为向量化操作以提高性能”。 - **分步拆解**:复杂任务拆解为子步骤,例如:“1. 提取文章关键词;2. 生成摘要;3. 添加3个讨论问题。” - **提供示例**:通过输入输出对减少歧义。 - **风格约束**:明确语言风格(如学术、幽默)、格式(JSON、表格)或长度限制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

本本本添哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值