矩阵超几何函数

本文深入解析了矩阵超几何函数的定义,包括其一般形式及其系数计算公式,列举了两种特殊形式并探讨了矩阵迹的自然指数和二项式序列的矩阵表达。还介绍了矩阵间的超几何函数以及关键的积分变换定理,展示了如何通过拉普拉斯变换操作改变函数系数。
摘要由CSDN通过智能技术生成

矩阵超几何函数定义

矩阵超几何函数定义为以下形式:

_pF_q(a_1,\dots ,a_p;b_1,\cdots,b_q;\mathrm X)=\sum_{k=0}^\infty\sum_\kappa \frac{(a_1)_\kappa \cdots (a_p)_\kappa}{(b_1)_\kappa \cdots (b_q)_\kappa}\frac{C_\kappa (\mathrm X)}{k!}                           (1)

这里    \kappa =(k_1, \cdots,k_m), \hspace {0.5em} k_1\ge \cdots \ge k_m \ge 0 表示 k 的一个划分,C_\kappa (\mathrm X) 是矩阵 X 对应于划分 \kappa 的 zonal 多项式。  这种一般化的超几何函数的系数 (a)_\kappa 由下面的公式给出:

(a)_\kappa =\prod_{i=1}^m (a-\frac{1}{2}(i-1))_{k_i}                                                                            (2)

其中,  (a)_k =a(a+1)\cdots(a+k-1), \hspace{0.5em} (a)_0=1

这里的矩阵 X 是复的m\times m 对称阵,系数 a_i, b_j 是任意的复数。当 m = 1,上述的矩阵超几何函数退化成经典的面向单个变量的超几何函数。

两种特殊的形式

(一) 矩阵迹的自然指数: 

\begin{align*} _0F_0(\mathrm X)&=\sum_{k=0}^\infty \sum_\kappa \frac{C_\kappa(\mathrm X)}{k!}\\ &=\sum_{k=0}^\infty \frac{(\textrm{tr} \mathrm X)^k}{k!}\\ &=\textrm{etr}( \mathrm X) \end{align*}                                                         (3)

(二)二项式序列的矩阵形式

\begin{align*} _1F_0(\mathrm X)&=\sum_{k=0}^\infty \sum_\kappa (a)_\kappa \frac{C_\kappa(\mathrm X)}{k!} \hspace {2em} (||\mathrm X||<1)\\ &=\det (I_m- \mathrm X) ^{-a}\end{align*}                       (4)

两个矩阵的超几何函数

对应于m\times m 对称矩阵 X Y 的超几何函数表示为:

_pF_q(a_1,\dots ,a_p;b_1,\cdots,b_q;\mathrm X, \mathrm Y)=\sum_{k=0}^\infty\sum_\kappa \frac{(a_1)_\kappa \cdots (a_p)_\kappa}{(b_1)_\kappa \cdots (b_q)_\kappa}\frac{C_\kappa (\mathrm X)C_\kappa (\mathrm Y)}{k! C_\kappa (\mathrm I_m)}       (5)

矩阵超几何函数的积分变换

定理 1, 如果 Z 是一个复的m\times m 对称矩阵且 Re(Z)>0 , Y 是一个m\times m 对称矩阵,那么:

\begin{align*} \int_{X>0} \textrm{etr}(-XZ) &(\det X)^{a-(m+1)/2} {}_pF_q(a_1,\dots ,a_p;b_1,\cdots,b_q;\mathrm X)(dX)\\ &=\Gamma_m(a)(\det Z)^{-a} {}_{p+1}F_q(a_1,\dots ,a_p, a;b_1,\cdots,b_q;\mathrm Z^{-1}) \end{align*}          (6)

该定理可以通过以下的积分公式证明:

\begin{align*} \int_{X>0} \textrm{etr}(-XZ) &(\det X)^{a-(m+1)/2} C_\kappa(\mathrm XY) (dX)\\ &=(a)_\kappa \Gamma_m(a)(\det Z)^{-a} C_\kappa(\mathrm YZ^{-1}) \end{align*}

可以看到,通过该定理所述的积分变换(该变换实质上为矩阵形式的拉普拉斯变换),超几何函数的分子部分的系数增加 1 项, {}_pF_q \rightarrow {}_{p+1}F_q ;相应地通过矩阵形式的拉普拉斯反变换,将超几何函数的分母部分的系数增加 1 项,{}_pF_q \rightarrow {}_{p}F_{q+1}

\begin{align*} \frac{\Gamma_m(b)2^{m(m-1)/2}}{(2\pi i)^{m(m+1)/2}} &\int_{Re(Z)=U_0} \textrm{etr}(XZ) (\det Z)^{-b} {}_pF_q(a_1,\dots ,a_p;b_1,\cdots,b_q;\mathrm Z^{-1})(dZ)\\ &=(\det X)^{b-(m+1)/2} {}_{p}F_{q+1}(a_1,\dots ,a_p, a;b_1,\cdots,b_q,b;\mathrm X) \end{align*}   (7)

利用(6)证明 (4)

根据公式(6),

\begin{align*} \Gamma_m(a)(\det Z)^{-a} {}_{1}F_0(a;\mathrm Z^{-1})=\int_{X>0} \textrm{etr}(-XZ) &(\det X)^{a-(m+1)/2} {}_0F_0(\mathrm X)(dX)\\ \end{align*}

Z^{-1} 代替 Z, 作变量代换 X=Z^{1/2}UZ^{1/2},相应的雅可比为 dX=(\det Z)^{(m+1)/2}dU, 利用 _0F_0( ZU)=\textrm{etr}(ZU) 得到

\begin{align*} {}_{1}F_0(a;\mathrm Z)&=\frac{1}{\Gamma_m(a)}\int_{U>0} \textrm{etr}(-U) (\det U)^{a-(m+1)/2} \textrm{etr}(ZU)(dU)\\ &=\frac{1}{\Gamma_m(a)}\int_{U>0} \textrm{etr}(-U(I-Z)) (\det U)^{a-(m+1)/2} (dU)\\ &=\frac{1}{\Gamma_m(a)}\int_{U>0} \textrm{etr}(-V) (\det V)^{a-(m+1)/2} (dV) \det{(I-Z)^{-a}}\\ &= \det{(I-Z)^{-a}} \end{align*}            (8)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值