【深度学习】Precision、Accuracy的区别,精确率与准确率:深度学习多分类问题中的性能评估详解

在深度学习的多分类问题中,Precision(精确率)和Accuracy(准确率)是两种常用的性能评估指标,它们各自有不同的定义和用途。

Precision(精确率)的中文发音是:pǔ rēi xī shēn

Accuracy(准确率)的中文发音是:ā kù rēi xī

以下是它们的区别及举例说明:

1. 准确率 (Accuracy)

准确率表示模型预测正确的样本数量占总样本数量的比例。它是一个整体性指标,反映了模型的总体性能。

公式:
Accuracy = 正确预测的样本数 总样本数 \text{Accuracy} = \frac{\text{正确预测的样本数}}{\text{总样本数}}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值