在深度学习的多分类问题中,Precision(精确率)和Accuracy(准确率)是两种常用的性能评估指标,它们各自有不同的定义和用途。
Precision(精确率)的中文发音是:pǔ rēi xī shēn
Accuracy(准确率)的中文发音是:ā kù rēi xī
以下是它们的区别及举例说明:
1. 准确率 (Accuracy)
准确率表示模型预测正确的样本数量占总样本数量的比例。它是一个整体性指标,反映了模型的总体性能。
公式:
Accuracy = 正确预测的样本数 总样本数 \text{Accuracy} = \frac{\text{正确预测的样本数}}{\text{总样本数}}