代价函数的作用(2)--机器学习

加上 θ 0 \theta_0 θ0的情况

在这里插入图片描述
在这里插入图片描述
每组 θ 0 \theta_0 θ0and θ 1 \theta_1 θ1都对应着不同的 h ( x ) h(x) h(x) J ( θ 0 , θ 1 ) J(\theta_0,\theta_1) J(θ0,θ1)
在这里插入图片描述
图一
在这里插入图片描述
图二
在这里插入图片描述
图三

θ 0 \theta_0 θ0 θ 0 \theta_0 θ0 h ( x ) h(x) h(x) J ( θ 0 , θ 1 ) J(\theta_0,\theta_1) J(θ0,θ1)
图一800-0.5 800 − 0.5 x 800-0.5x 8000.5x超过2000
图二3600 360 360 360比较小
图三2200.1 220 + 0.1 220+0.1 220+0.1最小

我们得找到让软件自己寻找最小值的办法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值