OFDM接收原理

1.基本的接收模型

y n = ∑ t = 0 N − 1 h n ( t ) ⋅ x n − t + n n y_n=\sum_{t=0}^{N-1}h_n(t)\cdot x_{n-t}+n_n yn=t=0N1hn(t)xnt+nn又我们有
x n = 1 N ∑ k = 1 K X k e j 2 π n k N , x n − t = 1 N ∑ k = 1 K X k e j 2 π n k N e − j 2 π t k N x_n=\frac{1}{\sqrt N}\sum_{k=1}^{K}X_ke^{\frac{j2\pi nk}{N}},x_{n-t}=\frac{1}{\sqrt N}\sum_{k=1}^{K}X_ke^{\frac{j2\pi nk}{N}}e^{-\frac{j2\pi tk}{N}} xn=N 1k=1KXkeNj2πnk,xnt=N 1k=1KXkeNj2πnkeNj2πtk x n − t x_{n-t} xnt代入,可得
y n = 1 N ∑ t = 0 N − 1 h n ( t ) ⋅ ∑ k = 1 K X k e j 2 π n k N e − j 2 π t k N + n n y_n=\frac{1}{\sqrt N}\sum_{t=0}^{N-1}h_n(t)\cdot \sum_{k=1}^{K}X_ke^{\frac{j2\pi nk}{N}}e^{-\frac{j2\pi tk}{N}}+n_n yn=N 1t=0N1hn(t)k=1KXkeNj2πnkeNj2πtk+nn对上式进行重写,即对 h ( n ) h(n) h(n)进行傅里叶变换
y n = 1 N ⋅ ∑ k = 1 N X k H n ( k ) e j 2 π n k N + n n y_n=\frac{1}{\sqrt N}\cdot \sum_{k=1}^{N}X_kH_n(k)e^{\frac{j2\pi nk}{N}}+n_n yn=N 1k=1NXkHn(k)eNj2πnk+nn再对 y n y_n yn进行傅里叶变换可以得到
Y k = 1 N ∑ k = 1 K y n e − j 2 π n k N Y_k=\frac{1}{\sqrt N}\sum_{k=1}^{K}y_ne^{-\frac{j2\pi nk}{N}} Yk=N 1k=1KyneNj2πnk再将 y n y_n yn代入可得
Y = H ⋅ X + n Y=H\cdot X+n Y=HX+n其中,列向量定义如下:
Y = [ Y 0 ⋮ Y N − 1 ] , X = [ X 0 ⋮ Y N − 1 ] , h = [ H 0 ⋮ H N − 1 ] Y=\left[ \begin{matrix} Y_0\\ \vdots \\ Y_{N-1} \end{matrix} \right] ,X=\left[ \begin{matrix} X_0\\ \vdots \\ Y_{N-1} \end{matrix} \right] ,h=\left[ \begin{matrix} H_0\\ \vdots \\ H_{N-1} \end{matrix} \right] Y=Y0YN1,X=X0YN1,h=H0HN1
如果信道是时不变的,那么给定的信道矩阵为对角阵。
并行信道表示如下图所示:

就像平常的信道一样。

2.循环卷积

我们假设有两个信道 h 1 , h 2 h1,h2 h1,h2,OFDM的图如下图所示:

信息的传输如下图所示:

这是有循环前缀的情况,若是去掉循环前缀,那么我们可以得到矩阵: Y = H ‾ X Y=\overline{H}X Y=HX

为什么H矩阵的第一项会是如上图所示的那样呢?
因为从未去掉循环前缀的矩阵中我们可以得到第三项,也就是去除循环前缀的第一项,是 y 2 = h 2 x 6 + h 1 x 1 y_2=h_2x_6+h_1x_1 y2=h2x6+h1x1去掉后,我们的信道矩阵第一项就得在最后加上 h 2 h_2 h2这一条了。

  • 加入CP和去除cp,将线性卷积变为循环卷积
  • 这将为我们处理信道矩阵带来巨大的便捷

3.信道的特征向量

  • 一个循环矩阵可以通过DFT实现对角化,也就是说,循环矩阵的特征值和DFT相同,而循环矩阵的特征向量都是线性独立的。
  • 令G代表一个 N X N NXN NXN的循环矩阵

循环矩阵的特征值如下: λ = ∑ p = 0 N − 1 g ( p ) ⋅ e j 2 π N k p \lambda=\sum_{p=0}^{N-1}g(p)\cdot e^{j\frac{2\pi}{N}kp} λ=p=0N1g(p)ejN2πkp
特征值对应的向量为:

再用SVD的方法来对角化信道,得到比较好的信道性能。有 y = H ‾ x y=\overline{H}x y=Hx
将其对角化,得到 y = W ⋅ D ⋅ W ∗ ⋅ x y=W\cdot D\cdot W^*\cdot x y=WDWx
两边同乘 w − 1 w^{-1} w1,得到 W − 1 y = D ⋅ W ∗ ⋅ x W^{-1}y=D\cdot W^*\cdot x W1y=DWx
等式左边代表接收信号的傅里叶变换,右边代表经过对角阵特征值加权后的数据符号的傅里叶反变换。

4.OFDM的优缺点

4.1优点

  • 抗多径衰落能力强。
  • 对于频率选择性衰落信道,OFDM可以通过子载波的动态比特分配,自适应功率分配和调制方式的改变,达到最大的信道容量
  • 易于实现

4.2缺点

  • 由于频谱相互重叠,所以OFDM对于频率的正交性要求很严格,因此对于传输过程中的频偏要求十分敏感,大约1/100的频偏才是可以被接受的。
  • 峰值功率与平均功率之比(PAPR)很大,原理上,这将增加成本。
  • 容易发生多载波互调失真,因此要求整个信号发送过程中线性很好。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值