1.基本的接收模型


y
n
=
∑
t
=
0
N
−
1
h
n
(
t
)
⋅
x
n
−
t
+
n
n
y_n=\sum_{t=0}^{N-1}h_n(t)\cdot x_{n-t}+n_n
yn=t=0∑N−1hn(t)⋅xn−t+nn又我们有
x
n
=
1
N
∑
k
=
1
K
X
k
e
j
2
π
n
k
N
,
x
n
−
t
=
1
N
∑
k
=
1
K
X
k
e
j
2
π
n
k
N
e
−
j
2
π
t
k
N
x_n=\frac{1}{\sqrt N}\sum_{k=1}^{K}X_ke^{\frac{j2\pi nk}{N}},x_{n-t}=\frac{1}{\sqrt N}\sum_{k=1}^{K}X_ke^{\frac{j2\pi nk}{N}}e^{-\frac{j2\pi tk}{N}}
xn=N1k=1∑KXkeNj2πnk,xn−t=N1k=1∑KXkeNj2πnke−Nj2πtk将
x
n
−
t
x_{n-t}
xn−t代入,可得
y
n
=
1
N
∑
t
=
0
N
−
1
h
n
(
t
)
⋅
∑
k
=
1
K
X
k
e
j
2
π
n
k
N
e
−
j
2
π
t
k
N
+
n
n
y_n=\frac{1}{\sqrt N}\sum_{t=0}^{N-1}h_n(t)\cdot \sum_{k=1}^{K}X_ke^{\frac{j2\pi nk}{N}}e^{-\frac{j2\pi tk}{N}}+n_n
yn=N1t=0∑N−1hn(t)⋅k=1∑KXkeNj2πnke−Nj2πtk+nn对上式进行重写,即对
h
(
n
)
h(n)
h(n)进行傅里叶变换
y
n
=
1
N
⋅
∑
k
=
1
N
X
k
H
n
(
k
)
e
j
2
π
n
k
N
+
n
n
y_n=\frac{1}{\sqrt N}\cdot \sum_{k=1}^{N}X_kH_n(k)e^{\frac{j2\pi nk}{N}}+n_n
yn=N1⋅k=1∑NXkHn(k)eNj2πnk+nn再对
y
n
y_n
yn进行傅里叶变换可以得到
Y
k
=
1
N
∑
k
=
1
K
y
n
e
−
j
2
π
n
k
N
Y_k=\frac{1}{\sqrt N}\sum_{k=1}^{K}y_ne^{-\frac{j2\pi nk}{N}}
Yk=N1k=1∑Kyne−Nj2πnk再将
y
n
y_n
yn代入可得
Y
=
H
⋅
X
+
n
Y=H\cdot X+n
Y=H⋅X+n其中,列向量定义如下:
Y
=
[
Y
0
⋮
Y
N
−
1
]
,
X
=
[
X
0
⋮
Y
N
−
1
]
,
h
=
[
H
0
⋮
H
N
−
1
]
Y=\left[ \begin{matrix} Y_0\\ \vdots \\ Y_{N-1} \end{matrix} \right] ,X=\left[ \begin{matrix} X_0\\ \vdots \\ Y_{N-1} \end{matrix} \right] ,h=\left[ \begin{matrix} H_0\\ \vdots \\ H_{N-1} \end{matrix} \right]
Y=⎣⎢⎡Y0⋮YN−1⎦⎥⎤,X=⎣⎢⎡X0⋮YN−1⎦⎥⎤,h=⎣⎢⎡H0⋮HN−1⎦⎥⎤
如果信道是时不变的,那么给定的信道矩阵为对角阵。
并行信道表示如下图所示:

2.循环卷积
我们假设有两个信道 h 1 , h 2 h1,h2 h1,h2,OFDM的图如下图所示:


这是有循环前缀的情况,若是去掉循环前缀,那么我们可以得到矩阵: Y = H ‾ X Y=\overline{H}X Y=HX

为什么H矩阵的第一项会是如上图所示的那样呢?
因为从未去掉循环前缀的矩阵中我们可以得到第三项,也就是去除循环前缀的第一项,是
y
2
=
h
2
x
6
+
h
1
x
1
y_2=h_2x_6+h_1x_1
y2=h2x6+h1x1去掉后,我们的信道矩阵第一项就得在最后加上
h
2
h_2
h2这一条了。
- 加入CP和去除cp,将线性卷积变为循环卷积
- 这将为我们处理信道矩阵带来巨大的便捷
3.信道的特征向量
- 一个循环矩阵可以通过DFT实现对角化,也就是说,循环矩阵的特征值和DFT相同,而循环矩阵的特征向量都是线性独立的。
- 令G代表一个 N X N NXN NXN的循环矩阵

循环矩阵的特征值如下:
λ
=
∑
p
=
0
N
−
1
g
(
p
)
⋅
e
j
2
π
N
k
p
\lambda=\sum_{p=0}^{N-1}g(p)\cdot e^{j\frac{2\pi}{N}kp}
λ=p=0∑N−1g(p)⋅ejN2πkp
特征值对应的向量为:

再用SVD的方法来对角化信道,得到比较好的信道性能。有
y
=
H
‾
x
y=\overline{H}x
y=Hx
将其对角化,得到
y
=
W
⋅
D
⋅
W
∗
⋅
x
y=W\cdot D\cdot W^*\cdot x
y=W⋅D⋅W∗⋅x
两边同乘
w
−
1
w^{-1}
w−1,得到
W
−
1
y
=
D
⋅
W
∗
⋅
x
W^{-1}y=D\cdot W^*\cdot x
W−1y=D⋅W∗⋅x
等式左边代表接收信号的傅里叶变换,右边代表经过对角阵特征值加权后的数据符号的傅里叶反变换。

4.OFDM的优缺点
4.1优点
- 抗多径衰落能力强。
- 对于频率选择性衰落信道,OFDM可以通过子载波的动态比特分配,自适应功率分配和调制方式的改变,达到最大的信道容量
- 易于实现
4.2缺点
- 由于频谱相互重叠,所以OFDM对于频率的正交性要求很严格,因此对于传输过程中的频偏要求十分敏感,大约1/100的频偏才是可以被接受的。
- 峰值功率与平均功率之比(PAPR)很大,原理上,这将增加成本。
- 容易发生多载波互调失真,因此要求整个信号发送过程中线性很好。