ORB-SLAM2从理论到代码实现(五):ORBmatcher程序详解

1. SearchByProjection(Frame &F, const vector<MapPoint*> &vpMapPoints, const float th)

函数功能SearchByProjection函数利用将相机坐标系下的Local MapPoints投影到图像坐标系,在其投影点附近根据描述子距离选取匹配,由此增加当前帧的MapPoints 
参数说明
F当前帧
vpMapPointsLocal MapPoints
th搜索半径
返回值成功匹配的数量

int ORBmatcher::SearchByProjection(Frame &F, const vector<MapPoint*> &vpMapPoints, const float th)
{
    int nmatches=0;//匹配数量
    const bool bFactor = th!=1.0;//阈值
    for(size_t iMP=0; iMP<vpMapPoints.size(); iMP++)//遍历所有MapPoints
    {
        MapPoint* pMP = vpMapPoints[iMP];
        // 判断该点是否要投影
        if(!pMP->mbTrackInView)//在SearchLocalPoints()中已经将Local MapPoints
//重投影(isInFrustum())到当前帧,并标记了这些点是否在当前帧的视野中即mbTrackInView         if(pMP->isBad())//如果质量不好不用
            continue;
        // 通过距离预测的金字塔层数,该层数相对于当前的帧
        const int &nPredictedLevel = pMP->mnTrackScaleLevel;
        // The size of the window will depend on the viewing direction
        // 搜索窗口的大小取决于视角, 若当前视角和平均视角夹角接近0度时, r取一个较小的值
        float r = RadiusByViewingCos(pMP->mTrackViewCos);
        // 如果需要进行更粗糙的搜索,则增大范围
        if(bFactor)
            r*=th;
        // 通过投影点(投影到当前帧,见isInFrustum())以及搜索窗口和预测的尺度进行搜索, 找出附近的兴趣点
        const vector<size_t> vIndices =
                F.GetFeaturesInArea(pMP->mTrackProjX,pMP->mTrackProjY,r*F.mvScaleFactors[nPredictedLevel],nPredictedLevel-1,nPredictedLevel);
        if(vIndices.empty())//没找到兴趣点
            continue;
        const cv::Mat MPdescriptor = pMP->GetDescriptor();//求描述子
        int bestDist=256;
        int bestLevel= -1;
        int bestDist2=256;
        int bestLevel2 = -1;
        int bestIdx =-1 ;
        // Get best and second matches with near keypoints
        for(vector<size_t>::const_iterator vit=vIndices.begin(), vend=vIndices.end(); vit!=vend; vit++)
        {
            const size_t idx = *vit;
 
            // 如果Frame中的该兴趣点已经有对应的MapPoint了,则退出该次循环
            if(F.mvpMapPoints[idx])
                if(F.mvpMapPoints[idx]->Observations()>0)
                    continue;
            if(F.mvuRight[idx]>0)
            {
                const float er = fabs(pMP->mTrackProjXR-F.mvuRight[idx]);
                if(er>r*F.mvScaleFactors[nPredictedLevel])
                  continue;
            }
            const cv::Mat &d = F.mDescriptors.row(idx);
            const int dist = DescriptorDistance(MPdescriptor,d);//求取描述子距离
            // 根据描述子寻找描述子距离最小和次小的特征点
            if(dist<bestDist)
            {
                bestDist2=bestDist;
                bestDist=dist;
                bestLevel2 = bestLevel;
                bestLevel = F.mvKeysUn[idx].octave;
                bestIdx=idx;
 
            }
 
            else if(dist<bestDist2)//求次小距离
            {
                bestLevel2 = F.mvKeysUn[idx].octave;
                bestDist2=dist;
            }
 
        }
        // Apply ratio to second match (only if best and second are in the same scale level)//对第次小距离匹配应用比率
        if(bestDist<=TH_HIGH)
        {
            if(bestLevel==bestLevel2 && bestDist>mfNNratio*bestDist2)
                continue;
 
            F.mvpMapPoints[bestIdx]=pMP; // 为Frame中的兴趣点增加对应的MapPoint
            nmatches++;
        }
 
    }
 
    return nmatches;
}

2. SearchByBoW(KeyFrame* pKF,Frame &F, vector<MapPoint*> &vpMapPointMatches)

函数功能通过词袋(bow)对关键帧(pKF)和当前帧(F)中的特征点进行快速匹配,不属于同一节点(node)的特征点直接跳过匹配,对属于同一节点(node0的特征点通过描述子距离进行匹配,根据匹配,用关键帧(pKF)中特征点对应的MapPoint更新F中特征点对应的MapPoints,通过距离阈值、比例阈值和角度投票进行剔除误匹配
pKF关键帧 
F当前帧
vpMapPointMatches当前帧中MapPoints对应的匹配,NULL表示未匹配
返回值成功匹配的数量

int ORBmatcher::SearchByBoW(KeyFrame* pKF,Frame &F, vector<MapPoint*> &vpMapPointMatches)
 
{
    const vector<MapPoint*> vpMapPointsKF = pKF->GetMapPointMatches();
    vpMapPointMatches = vector<MapPoint*>(F.N,static_cast<MapPoint*>(NULL));
    const DBoW2::FeatureVector &vFeatVecKF = pKF->mFeatVec;
    int nmatches=0;//匹配点个数
    vector<int> rotHist[HISTO_LENGTH];
    for(int i=0;i<HISTO_LENGTH;i++)
        rotHist[i].reserve(500);
    const float factor = 1.0f/HISTO_LENGTH;
    // We perform the matching over ORB that belong to the same vocabulary node (at a certain level)
    // 将属于同一节点(特定层)的ORB特征进行匹配
    DBoW2::FeatureVector::const_iterator KFit = vFeatVecKF.begin();
    DBoW2::FeatureVector::const_iterator Fit = F.mFeatVec.begin();
    DBoW2::FeatureVector::const_iterator KFend = vFeatVecKF.end();
    DBoW2::FeatureVector::const_iterator Fend = F.mFeatVec.end();
    while(KFit != KFend && Fit != Fend)
    {
        if(KFit->first == Fit->first) //步骤1:分别取出属于同一node的ORB特征点(只有属于同一node,才有可能是匹配点)
        {
            const vector<unsigned int> vIndicesKF = KFit->second;
            const vector<unsigned int> vIndicesF = Fit->second;
            // 步骤2:遍历KF中属于该node的特征点
            for(size_t iKF=0; iKF<vIndicesKF.size(); iKF++)
            {
               const unsigned int realIdxKF = vIndicesKF[iKF];
                MapPoint* pMP = vpMapPointsKF[realIdxKF]; // 取出KF中该特征对应的MapPoint
                if(!pMP)
                    continue;
                if(pMP->isBad())
                    continue;
                const cv::Mat &dKF= pKF->mDescriptors.row(realIdxKF); // 取出KF中该特征对应的描述子
                int bestDist1=256; // 最好的距离(最小距离)
                int bestIdxF =-1 ;
                int bestDist2=256; // 倒数第二好距离(倒数第二小距离)
 
                // 步骤3:遍历F中属于该node的特征点,找到了最佳匹配点
                for(size_t iF=0; iF<vIndicesF.size(); iF++)
                {
                    const unsigned int realIdxF = vIndicesF[iF];
                    if(vpMapPointMatches[realIdxF])// 表明这个点已经被匹配过了,不再匹配,加快速度
                       continue;
 
                    const cv::Mat &dF = F.mDescriptors.row(realIdxF); // 取出F中该特征对应的描述子
                    const int dist =  DescriptorDistance(dKF,dF); // 求描述子的距离
                    if(dist<bestDist1)// dist < bestDist1 < bestDist2,更新bestDist1 bestDist2
                   {
                        bestDist2=bestDist1;
                        bestDist1=dist;
                        bestIdxF=realIdxF;
 
                    }
                    else if(dist<bestDist2)// bestDist1 < dist < bestDist2,更新bestDist2
                    {
                        bestDist2=dist;
                    }
                }
 
                // 步骤4:根据阈值 和 角度投票剔除误匹配
                if(bestDist1<=TH_LOW) // 匹配距离(误差)小于阈值
                {
                    // 最佳匹配比次佳匹配明显要好,那么最佳匹配才真正靠谱
                    if(static_cast<float>(bestDist1)<mfNNratio*static_cast<float>(bestDist2))
                    {
                        // 步骤5:更新特征点的MapPoint
                        vpMapPointMatches[bestIdxF]=pMP;
                        const cv::KeyPoint &kp = pKF->mvKeysUn[realIdxKF];
                        if(mbCheckOrientation)
                        {
                            // trick!
                            // angle:每个特征点在提取描述子时的旋转主方向角度,如果图像旋转了,这个角度将发生改变
                            // 所有的特征点的角度变化应该是一致的,通过直方图统计得到最准确的角度变化值
                            float rot = kp.angle-F.mvKeys[bestIdxF].angle;// 该特征点的角度变化值
                            if(rot<0.0)
                                rot+=360.0f;
                            int bin = round(rot*factor);// 将rot分配到bin组
                            if(bin==HISTO_LENGTH)
                                bin=0;
                            assert(bin>=0 && bin<HISTO_LENGTH);//断言函数
                            rotHist[bin].push_back(bestIdxF);
                        }
                        nmatches++;
                    }
                }
 
            }
 
            KFit++;
            Fit++;
        }
        else if(KFit->first < Fit->first)
        {
            KFit = vFeatVecKF.lower_bound(Fit->first);
        }
        else
        {
            Fit = F.mFeatVec.lower_bound(KFit->first);
        }
    }
    // 根据方向剔除误匹配的点
    if(mbCheckOrientation)
    {
        int ind1=-1;
        int ind2=-1;
        int ind3=-1;
        // 计算rotHist中最大的三个的index
        ComputeThreeMaxima(rotHist,HISTO_LENGTH,ind1,ind2,ind3);
        for(int i=0; i<HISTO_LENGTH; i++)
        {
            // 如果特征点的旋转角度变化量属于这三个组,则保留
            if(i==ind1 || i==ind2 || i==ind3)
                continue;
            // 将除了ind1 ind2 ind3以外的匹配点去掉
            for(size_t j=0, jend=rotHist[i].size(); j<jend; j++)
            {
                vpMapPointMatches[rotHist[i][j]]=static_cast<MapPoint*>(NULL);
                nmatches--;
            }
        }
    }
 
    return nmatches;
}

3. SearchByProjection(KeyFrame* pKF, cv::Mat Scw, const vector<MapPoint*> &vpPoints, vector<MapPoint*> &vpMatched, int th) 

函数功能根据Sim3变换,将每个vpPoints投影到pKF上,并根据尺度确定一个搜索区域,根据该MapPoint的描述子与该区域内的特征点进行匹配,如果匹配误差小于TH_LOW即匹配成功,更新vpMatched
参数说明
pKF关键帧
ScwSim3矩阵,即变换矩阵
vpPointsMapPoint
vpMatchedMapPoint的匹配点
th搜索半径的因子
返回值成功匹配的数量
int ORBmatcher::SearchByProjection(KeyFrame* pKF, cv::Mat Scw, const vector<MapPoint*> &vpPoints, vector<MapPoint*> &vpMatched, int th)
{
    // Get Calibration Parameters for later projection
    //获取相机内参
    const float &fx = pKF->fx;
    const float &fy = pKF->fy;
    const float &cx = pKF->cx;
    const float &cy = pKF->cy;
    // Decompose Scw
    // 分解Scw矩阵,可以自己推一下公式
    cv::Mat sRcw = Scw.rowRange(0,3).colRange(0,3);
    const float scw = sqrt(sRcw.row(0).dot(sRcw.row(0)));// 计算得到尺度s
    cv::Mat Rcw = sRcw/scw;
    cv::Mat tcw = Scw.rowRange(0,3).col(3)/scw;// pKF坐标系下,世界坐标系到pKF的位移,方向由世界坐标系指向pKF
    cv::Mat Ow = -Rcw.t()*tcw;// 世界坐标系下,pKF到世界坐标系的位移(世界坐标系原点相对pKF的位置),方向由pKF指向世界坐标系
    // Set of MapPoints already found in the KeyFrame
    // 使用set类型,并去除没有匹配的点,用于快速检索某个MapPoint是否有匹配
    set<MapPoint*> spAlreadyFound(vpMatched.begin(), vpMatched.end());
    spAlreadyFound.erase(static_cast<MapPoint*>(NULL));//Null代表没匹配
    int nmatches=0;//成功匹配个数
   // For each Candidate MapPoint Project and Match
    // 遍历所有的MapPoints
    for(int iMP=0, iendMP=vpPoints.size(); iMP<iendMP; iMP++)
    {
        MapPoint* pMP = vpPoints[iMP];
        // Discard Bad MapPoints and already found
        // 丢弃坏的MapPoints和已经匹配上的MapPoints
        if(pMP->isBad() || spAlreadyFound.count(pMP))
            continue;
        // Get 3D Coords.
        //获取三维坐标
        cv::Mat p3Dw = pMP->GetWorldPos();
        // Transform into Camera Coords.
        //转化到相机坐标系
        cv::Mat p3Dc = Rcw*p3Dw+tcw;
        // Depth must be positive
        //求得的深度值必须为正
        if(p3Dc.at<float>(2)<0.0)
            continue;
        // Project into Image投影到图片上
        const float invz = 1/p3Dc.at<float>(2);
        const float x = p3Dc.at<float>(0)*invz;
        const float y = p3Dc.at<float>(1)*invz;
        const float u = fx*x+cx;
        const float v = fy*y+cy;
        // Point must be inside the image不在图片上的点去掉
        if(!pKF->IsInImage(u,v))
           continue;
        // Depth must be inside the scale invariance region of the point
        // 判断距离是否在尺度协方差范围内
        const float maxDistance = pMP->GetMaxDistanceInvariance();
        const float minDistance = pMP->GetMinDistanceInvariance();
        cv::Mat PO = p3Dw-Ow;
        const float dist = cv::norm(PO);
        if(dist<minDistance || dist>maxDistance)//超出范围
            continue;
        // Viewing angle must be less than 60 deg视角必须小于60度
        cv::Mat Pn = pMP->GetNormal();
        if(PO.dot(Pn)<0.5*dist)
            continue;
        int nPredictedLevel = pMP->PredictScale(dist,pKF);
        // Search in a radius
        // 根据尺度确定搜索半径
        const float radius = th*pKF->mvScaleFactors[nPredictedLevel];
        const vector<size_t> vIndices = pKF->GetFeaturesInArea(u,v,radius);
        if(vIndices.empty())
          continue;
        // Match to the most similar keypoint in the radius匹配最相似的点
        const cv::Mat dMP = pMP->GetDescriptor();
        int bestDist = 256;
        int bestIdx = -1;
        // 遍历搜索区域内所有特征点,与该MapPoint的描述子进行匹配
        for(vector<size_t>::const_iterator vit=vIndices.begin(), vend=vIndices.end(); vit!=vend; vit++)
        {
            const size_t idx = *vit;
            if(vpMatched[idx])
                continue;
            const int &kpLevel= pKF->mvKeysUn[idx].octave;
            if(kpLevel<nPredictedLevel-1 || kpLevel>nPredictedLevel)
               continue;
            const cv::Mat &dKF = pKF->mDescriptors.row(idx);
            const int dist = DescriptorDistance(dMP,dKF);
            if(dist<bestDist)//求最小距离
            {
               bestDist = dist;
               bestIdx = idx;
            }
        }
 
        // 该MapPoint与bestIdx对应的特征点匹配成功
        if(bestDist<=TH_LOW)
        {
            vpMatched[bestIdx]=pMP;
            nmatches++;
        }
 
    }
 
    return nmatches;
}

4. SearchByBoW(KeyFrame *pKF1, KeyFrame *pKF2, vector<MapPoint *> &vpMatches12)

函数功能通过词包,对关键帧的特征点进行跟踪,该函数用于闭环检测时两个关键帧间的特征点匹配,通过bow对pKF和F中的特征点进行快速匹配(不属于同一node的特征点直接跳过匹配),对属于同一node的特征点通过描述子距离进行匹配,根据匹配,更新vpMatches12
pKF1KeyFrame1
pKF2KeyFrame2
vpMatches12pKF2中与pKF1匹配的MapPoint,null表示没有匹配
返回值成功匹配的数量
/**
 * @brief 通过语法树加速两个关键帧之间的特征匹配。该函数用于闭环检测时两个关键帧间的特征点匹配
 * 
 * 通过bow对pKF和F中的特征点进行快速匹配(不属于同一node的特征点直接跳过匹配) \n
 * 对属于同一node的特征点通过描述子距离进行匹配 \n
 * 根据匹配,更新vpMatches12 \n
 * 通过距离阈值、比例阈值和角度投票进行剔除误匹配
 * @param  pKF1               KeyFrame1
 * @param  pKF2               KeyFrame2
 * @param  vpMatches12        pKF2中与pKF1匹配的MapPoint,null表示没有匹配
 * @return                    成功匹配的数量
 */
int ORBmatcher::SearchByBoW(KeyFrame *pKF1, KeyFrame *pKF2, vector<MapPoint *> &vpMatches12)
{
    // 详细注释可参见:SearchByBoW(KeyFrame* pKF,Frame &F, vector<MapPoint*> &vpMapPointMatches)

    const vector<cv::KeyPoint> &vKeysUn1 = pKF1->mvKeysUn;
    const DBoW2::FeatureVector &vFeatVec1 = pKF1->mFeatVec;
    const vector<MapPoint*> vpMapPoints1 = pKF1->GetMapPointMatches();
    const cv::Mat &Descriptors1 = pKF1->mDescriptors;

    const vector<cv::KeyPoint> &vKeysUn2 = pKF2->mvKeysUn;
    const DBoW2::FeatureVector &vFeatVec2 = pKF2->mFeatVec;
    const vector<MapPoint*> vpMapPoints2 = pKF2->GetMapPointMatches();
    const cv::Mat &Descriptors2 = pKF2->mDescriptors;

    vpMatches12 = vector<MapPoint*>(vpMapPoints1.size(),static_cast<MapPoint*>(NULL));
    vector<bool> vbMatched2(vpMapPoints2.size(),false);

    vector<int> rotHist[HISTO_LENGTH];
    for(int i=0;i<HISTO_LENGTH;i++)
        rotHist[i].reserve(500);

    const float factor = HISTO_LENGTH/360.0f;

    int nmatches = 0;

    DBoW2::FeatureVector::const_iterator f1it = vFeatVec1.begin();
    DBoW2::FeatureVector::const_iterator f2it = vFeatVec2.begin();
    DBoW2::FeatureVector::const_iterator f1end = vFeatVec1.end();
    DBoW2::FeatureVector::const_iterator f2end = vFeatVec2.end();

    while(f1it != f1end && f2it != f2end)
    {
        if(f1it->first == f2it->first)//步骤1:分别取出属于同一node的ORB特征点(只有属于同一node,才有可能是匹配点)
        {
            // 步骤2:遍历KF中属于该node的特征点
            for(size_t i1=0, iend1=f1it->second.size(); i1<iend1; i1++)
            {
                const size_t idx1 = f1it->second[i1];

                MapPoint* pMP1 = vpMapPoints1[idx1];
                if(!pMP1)
                    continue;
                if(pMP1->isBad())
                    continue;

                const cv::Mat &d1 = Descriptors1.row(idx1);

                int bestDist1=256;
                int bestIdx2 =-1 ;
                int bestDist2=256;

                // 步骤3:遍历F中属于该node的特征点,找到了最佳匹配点
                for(size_t i2=0, iend2=f2it->second.size(); i2<iend2; i2++)
                {
                    const size_t idx2 = f2it->second[i2];

                    MapPoint* pMP2 = vpMapPoints2[idx2];

                    if(vbMatched2[idx2] || !pMP2)
                        continue;

                    if(pMP2->isBad())
                        continue;

                    const cv::Mat &d2 = Descriptors2.row(idx2);

                    int dist = DescriptorDistance(d1,d2);

                    if(dist<bestDist1)
                    {
                        bestDist2=bestDist1;
                        bestDist1=dist;
                        bestIdx2=idx2;
                    }
                    else if(dist<bestDist2)
                    {
                        bestDist2=dist;
                    }
                }

                // 步骤4:根据阈值 和 角度投票剔除误匹配
                // 详见SearchByBoW(KeyFrame* pKF,Frame &F, vector<MapPoint*> &vpMapPointMatches)函数步骤4
                if(bestDist1<TH_LOW)
                {
                    if(static_cast<float>(bestDist1)<mfNNratio*static_cast<float>(bestDist2))
                    {
                        vpMatches12[idx1]=vpMapPoints2[bestIdx2];
                        vbMatched2[bestIdx2]=true;

                        if(mbCheckOrientation)
                        {
                            float rot = vKeysUn1[idx1].angle-vKeysUn2[bestIdx2].angle;
                            if(rot<0.0)
                                rot+=360.0f;
                            int bin = round(rot*factor);
                            if(bin==HISTO_LENGTH)
                                bin=0;
                            assert(bin>=0 && bin<HISTO_LENGTH);
                            rotHist[bin].push_back(idx1);
                        }
                        nmatches++;
                    }
                }
            }

            f1it++;
            f2it++;
        }
        else if(f1it->first < f2it->first)
        {
            f1it = vFeatVec1.lower_bound(f2it->first);
        }
        else
        {
            f2it = vFeatVec2.lower_bound(f1it->first);
        }
    }

    if(mbCheckOrientation)
    {
        int ind1=-1;
        int ind2=-1;
        int ind3=-1;

        ComputeThreeMaxima(rotHist,HISTO_LENGTH,ind1,ind2,ind3);

        for(int i=0; i<HISTO_LENGTH; i++)
        {
            if(i==ind1 || i==ind2 || i==ind3)
                continue;
            for(size_t j=0, jend=rotHist[i].size(); j<jend; j++)
            {
                vpMatches12[rotHist[i][j]]=static_cast<MapPoint*>(NULL);
                nmatches--;
            }
        }
    }

    return nmatches;
}

5. SearchForTriangulation(KeyFrame *pKF1, KeyFrame *pKF2, cv::Mat F12,vector<pair<size_t, size_t> > &vMatchedPairs, const bool bOnlyStereo)

函数功能利用基本矩阵F12,在两个关键帧之间未匹配的特征点中产生新的3d点
 
参数说明
pKF1关键帧1
pKF2关键帧2
F12基础矩阵
vMatchedPairs存储匹配特征点对,特征点用其在关键帧中的索引表示
bOnlyStereo在双目和rgbd情况下,要求特征点在右图存在匹配
返回值成功匹配的数量

int ORBmatcher::SearchForTriangulation(KeyFrame *pKF1, KeyFrame *pKF2, cv::Mat F12,
                                       vector<pair<size_t, size_t> > &vMatchedPairs, const bool bOnlyStereo)
{
    const DBoW2::FeatureVector &vFeatVec1 = pKF1->mFeatVec;//关键帧1的特征向量
    const DBoW2::FeatureVector &vFeatVec2 = pKF2->mFeatVec;//关键帧2的特征向量
    // Compute epipole in second image
    // 计算KF1的相机中心在KF2图像平面的坐标,即极点坐标
    cv::Mat Cw = pKF1->GetCameraCenter(); // twc1
    cv::Mat R2w = pKF2->GetRotation();    // Rc2w
    cv::Mat t2w = pKF2->GetTranslation(); // tc2w
    cv::Mat C2 = R2w*Cw+t2w; // tc2c1 KF1的相机中心在KF2坐标系的表示
    const float invz = 1.0f/C2.at<float>(2);
    // 步骤0:得到KF1的相机光心在KF2中的坐标(极点坐标),即投影
    const float ex =pKF2->fx*C2.at<float>(0)*invz+pKF2->cx;
    const float ey =pKF2->fy*C2.at<float>(1)*invz+pKF2->cy;
    // Find matches between not tracked keypoints查找未跟踪关键点之间的匹配 
    // Matching speed-up by ORB Vocabulary使用词袋加速
    // Compare only ORB that share the same node只比较同一节点下的ORB 
    int nmatches=0;
    vector<bool> vbMatched2(pKF2->N,false);
    vector<int> vMatches12(pKF1->N,-1);
    vector<int> rotHist[HISTO_LENGTH];
    for(int i=0;i<HISTO_LENGTH;i++)
        rotHist[i].reserve(500);
    const float factor = 1.0f/HISTO_LENGTH;
    // We perform the matching over ORB that belong to the same vocabulary node (at a certain level)
    // 将属于同一节点(特定层)的ORB特征进行匹配
    // FeatureVector的数据结构类似于:{(node1,feature_vector1) (node2,feature_vector2)...}
    // f1it->first对应node编号,f1it->second对应属于该node的所有特特征点编号
    DBoW2::FeatureVector::const_iterator f1it = vFeatVec1.begin();
    DBoW2::FeatureVector::const_iterator f2it = vFeatVec2.begin();
    DBoW2::FeatureVector::const_iterator f1end = vFeatVec1.end();
    DBoW2::FeatureVector::const_iterator f2end = vFeatVec2.end();
    // 步骤1:遍历pKF1和pKF2中的node节点
    while(f1it!=f1end && f2it!=f2end)
    {
        // 如果f1it和f2it属于同一个node节点
        if(f1it->first == f2it->first)
        {
           // 步骤2:遍历该node节点下(f1it->first)的所有特征点
            for(size_t i1=0, iend1=f1it->second.size(); i1<iend1; i1++)
            {
                // 获取pKF1中属于该node节点的所有特征点索引
                const size_t idx1 = f1it->second[i1];
                // 步骤2.1:通过特征点索引idx1在pKF1中取出对应的MapPoint
                MapPoint* pMP1 = pKF1->GetMapPoint(idx1);
                // If there is already a MapPoint skip
                // 由于寻找的是未匹配的特征点,所以pMP1应该为NULL
                if(pMP1)
                   continue;
                // 如果mvuRight中的值大于0,表示是双目,且该特征点有深度值
                const bool bStereo1 = pKF1->mvuRight[idx1]>=0;
                if(bOnlyStereo)
                    if(!bStereo1)
                        continue;                
                // 步骤2.2:通过特征点索引idx1在pKF1中取出对应的特征点
                const cv::KeyPoint &kp1 = pKF1->mvKeysUn[idx1];                
                // 步骤2.3:通过特征点索引idx1在pKF1中取出对应的特征点的描述子
                const cv::Mat &d1 = pKF1->mDescriptors.row(idx1);      
                int bestDist = TH_LOW;
              int bestIdx2 = -1;       
                // 步骤3:遍历该node节点下(f2it->first)的所有特征点
                for(size_t i2=0, iend2=f2it->second.size(); i2<iend2; i2++)
                {
                    // 获取pKF2中属于该node节点的所有特征点索引
                    size_t idx2 = f2it->second[i2];                   
                    // 步骤3.1:通过特征点索引idx2在pKF2中取出对应的MapPoint
                    MapPoint* pMP2 = pKF2->GetMapPoint(idx2);                  
 
                    // If we have already matched or there is a MapPoint skip
                    // 如果pKF2当前特征点索引idx2已经被匹配过或者对应的3d点非空
                    // 那么这个索引idx2就不能被考虑
                    if(vbMatched2[idx2] || pMP2)
                      continue;
                    const bool bStereo2 = pKF2->mvuRight[idx2]>=0;
                    if(bOnlyStereo)
                        if(!bStereo2)
                            continue;                    
                    // 步骤3.2:通过特征点索引idx2在pKF2中取出对应的特征点的描述子
                    const cv::Mat &d2 = pKF2->mDescriptors.row(idx2);                  
                    // 计算idx1与idx2在两个关键帧中对应特征点的描述子距离
                    const int dist = DescriptorDistance(d1,d2);               
                    if(dist>TH_LOW || dist>bestDist)
                        continue;
                    // 步骤3.3:通过特征点索引idx2在pKF2中取出对应的特征点
                    const cv::KeyPoint &kp2 = pKF2->mvKeysUn[idx2];
                   if(!bStereo1 && !bStereo2)
                    {
                        const float distex = ex-kp2.pt.x;
                        const float distey = ey-kp2.pt.y;
                        // 该特征点距离极点太近,表明kp2对应的MapPoint距离pKF1相机太近
                        if(distex*distex+distey*distey<100*pKF2->mvScaleFactors[kp2.octave])
                            continue;
                    }
                    // 步骤4:计算特征点kp2到kp1极线(kp1对应pKF2的一条极线)的距离是否小于阈值
                    if(CheckDistEpipolarLine(kp1,kp2,F12,pKF2))
                    {
                       bestIdx2 = idx2;
                      bestDist = dist;
                   }
 
                }
 
                // 步骤1、2、3、4总结下来就是:将左图像的每个特征点与右图像同一node节点的所有特征点
                // 依次检测,判断是否满足对极几何约束,满足约束就是匹配的特征点
               // 详见SearchByBoW(KeyFrame* pKF,Frame &F, vector<MapPoint*> &vpMapPointMatches)函数步骤4
               if(bestIdx2>=0)
                {
                    const cv::KeyPoint &kp2 = pKF2->mvKeysUn[bestIdx2];
                    vMatches12[idx1]=bestIdx2;
                    nmatches++;
                   if(mbCheckOrientation)
                    {
                        float rot = kp1.angle-kp2.angle;
                        if(rot<0.0)
                            rot+=360.0f;
                        int bin = round(rot*factor);
                        if(bin==HISTO_LENGTH)
                            bin=0;
                        assert(bin>=0 && bin<HISTO_LENGTH);
                       rotHist[bin].push_back(idx1);
                    }
              }
            }
            f1it++;
            f2it++;
        }
        else if(f1it->first < f2it->first)
        {
            f1it = vFeatVec1.lower_bound(f2it->first);
        }
        else
        {
           f2it = vFeatVec2.lower_bound(f1it->first);
        }
    }
    if(mbCheckOrientation)
    {
        int ind1=-1;
        int ind2=-1;
        int ind3=-1;
        ComputeThreeMaxima(rotHist,HISTO_LENGTH,ind1,ind2,ind3);
        for(int i=0; i<HISTO_LENGTH; i++)
        {
            if(i==ind1 || i==ind2 || i==ind3)
                continue;
            for(size_t j=0, jend=rotHist[i].size(); j<jend; j++)
            {
               vMatches12[rotHist[i][j]]=-1;
                nmatches--;
            }
        }
    }
    vMatchedPairs.clear();
    vMatchedPairs.reserve(nmatches);
    for(size_t i=0, iend=vMatches12.size(); i<iend; i++)
    {
        if(vMatches12[i]<0)
            continue;
        vMatchedPairs.push_back(make_pair(i,vMatches12[i]));
    }
    return nmatches;
}

6. Fuse(KeyFrame *pKF, const vector<MapPoint *> &vpMapPoints, const float th)

函数功能将MapPoints投影到关键帧pKF中,并判断是否有重复的MapPoints,1.如果MapPoint能匹配关键帧的特征点,并且该点有对应的MapPoint,那么将两个MapPoint合并(选择观测数多的),2.如果MapPoint能匹配关键帧的特征点,并且该点没有对应的MapPoint,那么为该点添加MapPoint
参数说明
pKF相邻关键帧
vpMapPoints当前关键帧的MapPoints
th搜索半径的因子
返回值重复MapPoints的数量
int ORBmatcher::Fuse(KeyFrame *pKF, const vector<MapPoint *> &vpMapPoints, const float th)
{   //获取旋转R,和平移t
    cv::Mat Rcw = pKF->GetRotation();
    cv::Mat tcw = pKF->GetTranslation();
     //获取相机内参
    const float &fx = pKF->fx;
    const float &fy = pKF->fy;
    const float &cx = pKF->cx;
    const float &cy = pKF->cy;
    const float &bf = pKF->mbf;
    //获取相机中心
    cv::Mat Ow = pKF->GetCameraCenter();
    int nFused=0;//重复MapPoints的数量
    const int nMPs = vpMapPoints.size();
    // 遍历所有的MapPoints
    for(int i=0; i<nMPs; i++)
    {
        MapPoint* pMP = vpMapPoints[i];
        if(!pMP)
            continue;
        if(pMP->isBad() || pMP->IsInKeyFrame(pKF))
            continue;
        cv::Mat p3Dw = pMP->GetWorldPos();//获取MP在世界坐标系3D坐标
        cv::Mat p3Dc = Rcw*p3Dw + tcw;//求取MP在相机坐标系下的坐标
        // Depth must be positive深度值必须为正
        if(p3Dc.at<float>(2)<0.0f)
            continue;
        const float invz = 1/p3Dc.at<float>(2);//1/z
        const float x = p3Dc.at<float>(0)*invz;//这几部都是投影公式,见SLAM14讲86页
        const float y = p3Dc.at<float>(1)*invz;
        const float u = fx*x+cx;
        const float v = fy*y+cy;// 步骤1:得到MapPoint在图像上的投影坐标
        // Point must be inside the image
        if(!pKF->IsInImage(u,v))//如果Point不在图片内
            continue;
        const float ur = u-bf*invz;//公式z=fb/d,d=ul-ur,这里ul即u
        const float maxDistance = pMP->GetMaxDistanceInvariance();
        const float minDistance = pMP->GetMinDistanceInvariance();
        cv::Mat PO = p3Dw-Ow;
        const float dist3D = cv::norm(PO);
        // Depth must be inside the scale pyramid of the image深度必须在图像的尺度金字塔内
        if(dist3D<minDistance || dist3D>maxDistance )
           continue;
        // Viewing angle must be less than 60 deg视角必须小于60度 
 
        cv::Mat Pn = pMP->GetNormal();
        if(PO.dot(Pn)<0.5*dist3D)
            continue;
        int nPredictedLevel = pMP->PredictScale(dist3D,pKF);
        // Search in a radius
 
        const float radius = th*pKF->mvScaleFactors[nPredictedLevel];// 步骤2:根据MapPoint的深度确定尺度,从而确定搜索范围
        const vector<size_t> vIndices = pKF->GetFeaturesInArea(u,v,radius);
        if(vIndices.empty())
            continue;
        // Match to the most similar keypoint in the radius与半径中最相似的关键点匹配 
        const cv::Mat dMP = pMP->GetDescriptor();
        int bestDist = 256;
        int bestIdx = -1;
        for(vector<size_t>::const_iterator vit=vIndices.begin(), vend=vIndices.end(); vit!=vend; vit++)// 步骤3:遍历搜索范围内的features
        {
            const size_t idx = *vit;
            const cv::KeyPoint &kp = pKF->mvKeysUn[idx];
            const int &kpLevel= kp.octave;
            if(kpLevel<nPredictedLevel-1 || kpLevel>nPredictedLevel)
                continue;
            // 计算MapPoint投影的坐标与这个区域特征点的距离,如果偏差很大,直接跳过特征点匹配
            if(pKF->mvuRight[idx]>=0)
            {
                // Check reprojection error in stereo
                const float &kpx = kp.pt.x;
                const float &kpy = kp.pt.y;
                const float &kpr = pKF->mvuRight[idx];
                const float ex = u-kpx;
                const float ey = v-kpy;
                const float er = ur-kpr;
                const float e2 = ex*ex+ey*ey+er*er;
                if(e2*pKF->mvInvLevelSigma2[kpLevel]>7.8)
                    continue;
            }
            else
            {
                const float &kpx = kp.pt.x;
                const float &kpy = kp.pt.y;
                const float ex = u-kpx;
                const float ey = v-kpy;
                const float e2 = ex*ex+ey*ey;
                // 基于卡方检验计算出的阈值(假设测量有一个像素的偏差)
                if(e2*pKF->mvInvLevelSigma2[kpLevel]>5.99)
                    continue;
            }
 
            const cv::Mat &dKF = pKF->mDescriptors.row(idx);
            const int dist = DescriptorDistance(dMP,dKF);
            if(dist<bestDist)// 找MapPoint在该区域最佳匹配的特征点
            {
                bestDist = dist;
                bestIdx = idx;
            }
        }
        // If there is already a MapPoint replace otherwise add new measurement
        if(bestDist<=TH_LOW)// 找到了MapPoint在该区域最佳匹配的特征点
        {
            MapPoint* pMPinKF = pKF->GetMapPoint(bestIdx);
            if(pMPinKF)// 如果这个点有对应的MapPoint
            {
                if(!pMPinKF->isBad())// 如果这个MapPoint不是bad,选择哪一个呢?哪个观测的多选哪一个
               {
                    if(pMPinKF->Observations()>pMP->Observations())
                        pMP->Replace(pMPinKF);
                    else
                        pMPinKF->Replace(pMP);
                }
 
            }
            else// 如果这个点没有对应的MapPoint,那么为该点添加MapPoint
            {
                pMP->AddObservation(pKF,bestIdx);
                pKF->AddMapPoint(pMP,bestIdx);
            }
            nFused++
        }
    }
    return nFused;
}

7. Fuse(KeyFrame *pKF, cv::Mat Scw, const vector<MapPoint *> &vpPoints, float th, vector<MapPoint *> &vpReplacePoint)

函数功能投影MapPoints到KeyFrame中,并判断是否有重复的MapPoints
参数说明
pKF相邻关键帧
ScwScw为世界坐标系到pKF机体坐标系的Sim3变换,用于将世界坐标系下的vpPoints变换到机体坐标系
vpPoints当前关键帧的MapPoints
th搜索半径的因子
vpReplacePoint记录下来需要被替换掉的pMPinKF
返回值重复MapPoints的数量
// 投影MapPoints(用Sim3: Scw参数)到KeyFrame中,并判断是否有重复的MapPoints
// Scw为世界坐标系到pKF机体坐标系的Sim3变换,用于将世界坐标系下的vpPoints变换到机体坐标系
int ORBmatcher::Fuse(KeyFrame *pKF, cv::Mat Scw, const vector<MapPoint *> &vpPoints, float th, vector<MapPoint *> &vpReplacePoint)
{
    // Get Calibration Parameters for later projection
    const float &fx = pKF->fx;
    const float &fy = pKF->fy;
    const float &cx = pKF->cx;
    const float &cy = pKF->cy;

    // Decompose Scw
    // 将Sim3转化为SE3并分解
    cv::Mat sRcw = Scw.rowRange(0,3).colRange(0,3);
    const float scw = sqrt(sRcw.row(0).dot(sRcw.row(0)));// 计算得到尺度s
    cv::Mat Rcw = sRcw/scw;// 除掉s
    cv::Mat tcw = Scw.rowRange(0,3).col(3)/scw;// 除掉s
    cv::Mat Ow = -Rcw.t()*tcw;

    // Set of MapPoints already found in the KeyFrame
    const set<MapPoint*> spAlreadyFound = pKF->GetMapPoints();

    int nFused=0;

    const int nPoints = vpPoints.size();

    // For each candidate MapPoint project and match
    // 遍历所有的MapPoints
    for(int iMP=0; iMP<nPoints; iMP++)
    {
        MapPoint* pMP = vpPoints[iMP];

        // Discard Bad MapPoints and already found
        if(pMP->isBad() || spAlreadyFound.count(pMP))
            continue;

        // Get 3D Coords.
        cv::Mat p3Dw = pMP->GetWorldPos();

        // Transform into Camera Coords.
        cv::Mat p3Dc = Rcw*p3Dw+tcw;

        // Depth must be positive
        if(p3Dc.at<float>(2)<0.0f)
            continue;

        // Project into Image
        const float invz = 1.0/p3Dc.at<float>(2);
        const float x = p3Dc.at<float>(0)*invz;
        const float y = p3Dc.at<float>(1)*invz;

        const float u = fx*x+cx;
        const float v = fy*y+cy;// 得到MapPoint在图像上的投影坐标

        // Point must be inside the image
        if(!pKF->IsInImage(u,v))
            continue;

        // Depth must be inside the scale pyramid of the image
        // 根据距离是否在图像合理金字塔尺度范围内和观测角度是否小于60度判断该MapPoint是否正常
        const float maxDistance = pMP->GetMaxDistanceInvariance();
        const float minDistance = pMP->GetMinDistanceInvariance();
        cv::Mat PO = p3Dw-Ow;
        const float dist3D = cv::norm(PO);

        if(dist3D<minDistance || dist3D>maxDistance)
            continue;

        // Viewing angle must be less than 60 deg
        cv::Mat Pn = pMP->GetNormal();

        if(PO.dot(Pn)<0.5*dist3D)
            continue;

        // Compute predicted scale level
        const int nPredictedLevel = pMP->PredictScale(dist3D,pKF);

        // Search in a radius
        // 计算搜索范围
        const float radius = th*pKF->mvScaleFactors[nPredictedLevel];

        // 收集pKF在该区域内的特征点
        const vector<size_t> vIndices = pKF->GetFeaturesInArea(u,v,radius);

        if(vIndices.empty())
            continue;

        // Match to the most similar keypoint in the radius

        const cv::Mat dMP = pMP->GetDescriptor();

        int bestDist = INT_MAX;
        int bestIdx = -1;
        for(vector<size_t>::const_iterator vit=vIndices.begin(); vit!=vIndices.end(); vit++)
        {
            const size_t idx = *vit;
            const int &kpLevel = pKF->mvKeysUn[idx].octave;

            if(kpLevel<nPredictedLevel-1 || kpLevel>nPredictedLevel)
                continue;

            const cv::Mat &dKF = pKF->mDescriptors.row(idx);

            int dist = DescriptorDistance(dMP,dKF);

            if(dist<bestDist)
            {
                bestDist = dist;
                bestIdx = idx;
            }
        }

        // If there is already a MapPoint replace otherwise add new measurement
        if(bestDist<=TH_LOW)
        {
            MapPoint* pMPinKF = pKF->GetMapPoint(bestIdx);
            // 如果这个MapPoint已经存在,则替换,
            // 这里不能轻易替换(因为MapPoint一般会被很多帧都可以观测到),这里先记录下来,之后调用Replace函数来替换
            if(pMPinKF)
            {
                if(!pMPinKF->isBad())
                    vpReplacePoint[iMP] = pMPinKF;// 记录下来该pMPinKF需要被替换掉
            }
            else// 如果这个MapPoint不存在,直接添加
            {
                pMP->AddObservation(pKF,bestIdx);
                pKF->AddMapPoint(pMP,bestIdx);
            }
            nFused++;
        }
    }

    return nFused;
}

8. SearchBySim3(KeyFrame *pKF1, KeyFrame *pKF2, vector<MapPoint*> &vpMatches12,const float &s12, const cv::Mat &R12, const cv::Mat &t12, const float th)

函数功能通过Sim3变换,确定pKF1的特征点在pKF2中的大致区域,同理,确定pKF2的特征点在pKF1中的大致区域,在该区域内通过描述子进行匹配捕获pKF1和pKF2之前漏匹配的特征点,更新vpMatches12(之前使用SearchByBoW进行特征点匹配时会有漏匹配)
参数说明
pKF1关键帧1
pKF2关键帧2
vpMatches12存储匹配特征点对,特征点用其在关键帧中的索引表示
s12尺度
R121到2的旋转矩阵
t121到2的平移
th搜索半径的因子
返回值重复MapPoints的数量
步骤

1.通过Sim变换,确定pKF1的特征点在pKF2中的大致区域,在该区域内通过描述子进行匹配捕获pKF1和pKF2之前漏匹配的特征点,更新vpMatches12(之前使用SearchByBoW进行特征点匹配时会有漏匹配)

2.通过Sim变换,确定pKF2的特征点在pKF1中的大致区域,在该区域内通过描述子进行匹配捕获pKF1和pKF2之前漏匹配的特征点,更新vpMatches12

// 通过Sim3变换,确定pKF1的特征点在pKF2中的大致区域,同理,确定pKF2的特征点在pKF1中的大致区域
// 在该区域内通过描述子进行匹配捕获pKF1和pKF2之前漏匹配的特征点,更新vpMatches12(之前使用SearchByBoW进行特征点匹配时会有漏匹配)
int ORBmatcher::SearchBySim3(KeyFrame *pKF1, KeyFrame *pKF2, vector<MapPoint*> &vpMatches12,
                             const float &s12, const cv::Mat &R12, const cv::Mat &t12, const float th)
{
    // 步骤1:变量初始化
    const float &fx = pKF1->fx;
    const float &fy = pKF1->fy;
    const float &cx = pKF1->cx;
    const float &cy = pKF1->cy;

    // Camera 1 from world
    // 从world到camera的变换
    cv::Mat R1w = pKF1->GetRotation();
    cv::Mat t1w = pKF1->GetTranslation();

    //Camera 2 from world
    cv::Mat R2w = pKF2->GetRotation();
    cv::Mat t2w = pKF2->GetTranslation();

    //Transformation between cameras
    cv::Mat sR12 = s12*R12;
    cv::Mat sR21 = (1.0/s12)*R12.t();
    cv::Mat t21 = -sR21*t12;

    const vector<MapPoint*> vpMapPoints1 = pKF1->GetMapPointMatches();
    const int N1 = vpMapPoints1.size();

    const vector<MapPoint*> vpMapPoints2 = pKF2->GetMapPointMatches();
    const int N2 = vpMapPoints2.size();

    vector<bool> vbAlreadyMatched1(N1,false);// 用于记录该特征点是否被处理过
    vector<bool> vbAlreadyMatched2(N2,false);// 用于记录该特征点是否在pKF1中有匹配

    // 步骤2:用vpMatches12更新vbAlreadyMatched1和vbAlreadyMatched2
    for(int i=0; i<N1; i++)
    {
        MapPoint* pMP = vpMatches12[i];
        if(pMP)
        {
            vbAlreadyMatched1[i]=true;// 该特征点已经判断过
            int idx2 = pMP->GetIndexInKeyFrame(pKF2);
            if(idx2>=0 && idx2<N2)
                vbAlreadyMatched2[idx2]=true;// 该特征点在pKF1中有匹配
        }
    }

    vector<int> vnMatch1(N1,-1);
    vector<int> vnMatch2(N2,-1);

    // Transform from KF1 to KF2 and search
    // 步骤3.1:通过Sim变换,确定pKF1的特征点在pKF2中的大致区域,
    //         在该区域内通过描述子进行匹配捕获pKF1和pKF2之前漏匹配的特征点,更新vpMatches12
    //         (之前使用SearchByBoW进行特征点匹配时会有漏匹配)
    for(int i1=0; i1<N1; i1++)
    {
        MapPoint* pMP = vpMapPoints1[i1];

        if(!pMP || vbAlreadyMatched1[i1])// 该特征点已经有匹配点了,直接跳过
            continue;

        if(pMP->isBad())
            continue;

        cv::Mat p3Dw = pMP->GetWorldPos();
        cv::Mat p3Dc1 = R1w*p3Dw + t1w;// 把pKF1系下的MapPoint从world坐标系变换到camera1坐标系
        cv::Mat p3Dc2 = sR21*p3Dc1 + t21;// 再通过Sim3将该MapPoint从camera1变换到camera2坐标系

        // Depth must be positive
        if(p3Dc2.at<float>(2)<0.0)
            continue;

        // 投影到camera2图像平面
        const float invz = 1.0/p3Dc2.at<float>(2);
        const float x = p3Dc2.at<float>(0)*invz;
        const float y = p3Dc2.at<float>(1)*invz;

        const float u = fx*x+cx;
        const float v = fy*y+cy;

        // Point must be inside the image
        if(!pKF2->IsInImage(u,v))
            continue;

        const float maxDistance = pMP->GetMaxDistanceInvariance();
        const float minDistance = pMP->GetMinDistanceInvariance();
        const float dist3D = cv::norm(p3Dc2);

        // Depth must be inside the scale invariance region
        if(dist3D<minDistance || dist3D>maxDistance )
            continue;

        // Compute predicted octave
        // 预测该MapPoint对应的特征点在图像金字塔哪一层
        const int nPredictedLevel = pMP->PredictScale(dist3D,pKF2);

        // Search in a radius
        // 计算特征点搜索半径
        const float radius = th*pKF2->mvScaleFactors[nPredictedLevel];

        // 取出该区域内的所有特征点
        const vector<size_t> vIndices = pKF2->GetFeaturesInArea(u,v,radius);

        if(vIndices.empty())
            continue;

        // Match to the most similar keypoint in the radius
        const cv::Mat dMP = pMP->GetDescriptor();

        int bestDist = INT_MAX;
        int bestIdx = -1;
        // 遍历搜索区域内的所有特征点,与pMP进行描述子匹配
        for(vector<size_t>::const_iterator vit=vIndices.begin(), vend=vIndices.end(); vit!=vend; vit++)
        {
            const size_t idx = *vit;

            const cv::KeyPoint &kp = pKF2->mvKeysUn[idx];

            if(kp.octave<nPredictedLevel-1 || kp.octave>nPredictedLevel)
                continue;

            const cv::Mat &dKF = pKF2->mDescriptors.row(idx);

            const int dist = DescriptorDistance(dMP,dKF);

            if(dist<bestDist)
            {
                bestDist = dist;
                bestIdx = idx;
            }
        }

        if(bestDist<=TH_HIGH)
        {
            vnMatch1[i1]=bestIdx;
        }
    }

    // Transform from KF2 to KF1 and search
    // 步骤3.2:通过Sim变换,确定pKF2的特征点在pKF1中的大致区域,
    //         在该区域内通过描述子进行匹配捕获pKF1和pKF2之前漏匹配的特征点,更新vpMatches12
    //         (之前使用SearchByBoW进行特征点匹配时会有漏匹配)
    for(int i2=0; i2<N2; i2++)
    {
        MapPoint* pMP = vpMapPoints2[i2];

        if(!pMP || vbAlreadyMatched2[i2])
            continue;

        if(pMP->isBad())
            continue;

        cv::Mat p3Dw = pMP->GetWorldPos();
        cv::Mat p3Dc2 = R2w*p3Dw + t2w;
        cv::Mat p3Dc1 = sR12*p3Dc2 + t12;

        // Depth must be positive
        if(p3Dc1.at<float>(2)<0.0)
            continue;

        const float invz = 1.0/p3Dc1.at<float>(2);
        const float x = p3Dc1.at<float>(0)*invz;
        const float y = p3Dc1.at<float>(1)*invz;

        const float u = fx*x+cx;
        const float v = fy*y+cy;

        // Point must be inside the image
        if(!pKF1->IsInImage(u,v))
            continue;

        const float maxDistance = pMP->GetMaxDistanceInvariance();
        const float minDistance = pMP->GetMinDistanceInvariance();
        const float dist3D = cv::norm(p3Dc1);

        // Depth must be inside the scale pyramid of the image
        if(dist3D<minDistance || dist3D>maxDistance)
            continue;

        // Compute predicted octave
        const int nPredictedLevel = pMP->PredictScale(dist3D,pKF1);

        // Search in a radius of 2.5*sigma(ScaleLevel)
        const float radius = th*pKF1->mvScaleFactors[nPredictedLevel];

        const vector<size_t> vIndices = pKF1->GetFeaturesInArea(u,v,radius);

        if(vIndices.empty())
            continue;

        // Match to the most similar keypoint in the radius
        const cv::Mat dMP = pMP->GetDescriptor();

        int bestDist = INT_MAX;
        int bestIdx = -1;
        for(vector<size_t>::const_iterator vit=vIndices.begin(), vend=vIndices.end(); vit!=vend; vit++)
        {
            const size_t idx = *vit;

            const cv::KeyPoint &kp = pKF1->mvKeysUn[idx];

            if(kp.octave<nPredictedLevel-1 || kp.octave>nPredictedLevel)
                continue;

            const cv::Mat &dKF = pKF1->mDescriptors.row(idx);

            const int dist = DescriptorDistance(dMP,dKF);

            if(dist<bestDist)
            {
                bestDist = dist;
                bestIdx = idx;
            }
        }

        if(bestDist<=TH_HIGH)
        {
            vnMatch2[i2]=bestIdx;
        }
    }

    // Check agreement
    int nFound = 0;

    for(int i1=0; i1<N1; i1++)
    {
        int idx2 = vnMatch1[i1];

        if(idx2>=0)
        {
            int idx1 = vnMatch2[idx2];
            if(idx1==i1)
            {
                vpMatches12[i1] = vpMapPoints2[idx2];
                nFound++;
            }
        }
    }

    return nFound;
}

8. SearchByProjection(Frame &CurrentFrame, const Frame &LastFrame, const float th, const bool bMono)

函数功能上一帧中包含了MapPoints,对这些MapPoints进行tracking,由此增加当前帧的MapPoints,
LastFrame上一帧
th阈值
bMono是否为单目
返回值成功匹配的数量
步骤

1. 将上一帧的MapPoints投影到当前帧(根据速度模型可以估计当前帧的Tcw)

2. 在投影点附近根据描述子距离选取匹配,以及最终的方向投票机制进行剔除

/**
 * @brief 对上一帧每个3D点通过投影在小范围内找到和最匹配的2D点。从而实现当前帧CurrentFrame对上一帧LastFrame 3D点的匹配跟踪。用于tracking中前后帧跟踪
 *
 * 上一帧中包含了MapPoints,对这些MapPoints进行tracking,由此增加当前帧的MapPoints \n
 * 1. 将上一帧的MapPoints投影到当前帧(根据速度模型可以估计当前帧的Tcw)
 * 2. 在投影点附近根据描述子距离选取匹配,以及最终的方向投票机制进行剔除
 * @param  CurrentFrame 当前帧
 * @param  LastFrame    上一帧
 * @param  th           阈值
 * @param  bMono        是否为单目
 * @return              成功匹配的数量
 * @see SearchByBoW()
 */
int ORBmatcher::SearchByProjection(Frame &CurrentFrame, const Frame &LastFrame, const float th, const bool bMono)
{
    int nmatches = 0;

    // Rotation Histogram (to check rotation consistency)
    vector<int> rotHist[HISTO_LENGTH];
    for(int i=0;i<HISTO_LENGTH;i++)
        rotHist[i].reserve(500);
    const float factor = HISTO_LENGTH/360.0f;

    const cv::Mat Rcw = CurrentFrame.mTcw.rowRange(0,3).colRange(0,3);
    const cv::Mat tcw = CurrentFrame.mTcw.rowRange(0,3).col(3);

    const cv::Mat twc = -Rcw.t()*tcw; // twc(w)

    const cv::Mat Rlw = LastFrame.mTcw.rowRange(0,3).colRange(0,3);
    const cv::Mat tlw = LastFrame.mTcw.rowRange(0,3).col(3); // tlw(l)

    // vector from LastFrame to CurrentFrame expressed in LastFrame
    const cv::Mat tlc = Rlw*twc+tlw; // Rlw*twc(w) = twc(l), twc(l) + tlw(l) = tlc(l)

    // 判断前进还是后退,并以此预测特征点在当前帧所在的金字塔层数
    const bool bForward = tlc.at<float>(2)>CurrentFrame.mb && !bMono; // 非单目情况,如果Z大于基线,则表示前进
    const bool bBackward = -tlc.at<float>(2)>CurrentFrame.mb && !bMono; // 非单目情况,如果Z小于基线,则表示前进

    for(int i=0; i<LastFrame.N; i++)
    {
        MapPoint* pMP = LastFrame.mvpMapPoints[i];

        if(pMP)
        {
            if(!LastFrame.mvbOutlier[i])
            {
                // 对上一帧有效的MapPoints进行跟踪
                // Project
                cv::Mat x3Dw = pMP->GetWorldPos();
                cv::Mat x3Dc = Rcw*x3Dw+tcw;

                const float xc = x3Dc.at<float>(0);
                const float yc = x3Dc.at<float>(1);
                const float invzc = 1.0/x3Dc.at<float>(2);

                if(invzc<0)
                    continue;

                float u = CurrentFrame.fx*xc*invzc+CurrentFrame.cx;
                float v = CurrentFrame.fy*yc*invzc+CurrentFrame.cy;

                if(u<CurrentFrame.mnMinX || u>CurrentFrame.mnMaxX)
                    continue;
                if(v<CurrentFrame.mnMinY || v>CurrentFrame.mnMaxY)
                    continue;

                int nLastOctave = LastFrame.mvKeys[i].octave;

                // Search in a window. Size depends on scale
                float radius = th*CurrentFrame.mvScaleFactors[nLastOctave]; // 尺度越大,搜索范围越大

                vector<size_t> vIndices2;

                // NOTE 尺度越大,图像越小
                // 以下可以这么理解,例如一个有一定面积的圆点,在某个尺度n下它是一个特征点
                // 当前进时,圆点的面积增大,在某个尺度m下它是一个特征点,由于面积增大,则需要在更高的尺度下才能检测出来
                // 因此m>=n,对应前进的情况,nCurOctave>=nLastOctave。后退的情况可以类推
                if(bForward) // 前进,则上一帧兴趣点在所在的尺度nLastOctave<=nCurOctave
                    vIndices2 = CurrentFrame.GetFeaturesInArea(u,v, radius, nLastOctave);
                else if(bBackward) // 后退,则上一帧兴趣点在所在的尺度0<=nCurOctave<=nLastOctave
                    vIndices2 = CurrentFrame.GetFeaturesInArea(u,v, radius, 0, nLastOctave);
                else // 在[nLastOctave-1, nLastOctave+1]中搜索
                    vIndices2 = CurrentFrame.GetFeaturesInArea(u,v, radius, nLastOctave-1, nLastOctave+1);

                if(vIndices2.empty())
                    continue;

                const cv::Mat dMP = pMP->GetDescriptor();

                int bestDist = 256;
                int bestIdx2 = -1;

                // 遍历满足条件的特征点
                for(vector<size_t>::const_iterator vit=vIndices2.begin(), vend=vIndices2.end(); vit!=vend; vit++)
                {
                    // 如果该特征点已经有对应的MapPoint了,则退出该次循环
                    const size_t i2 = *vit;
                    if(CurrentFrame.mvpMapPoints[i2])
                        if(CurrentFrame.mvpMapPoints[i2]->Observations()>0)
                            continue;

                    if(CurrentFrame.mvuRight[i2]>0)
                    {
                        // 双目和rgbd的情况,需要保证右图的点也在搜索半径以内
                        const float ur = u - CurrentFrame.mbf*invzc;
                        const float er = fabs(ur - CurrentFrame.mvuRight[i2]);
                        if(er>radius)
                            continue;
                    }

                    const cv::Mat &d = CurrentFrame.mDescriptors.row(i2);

                    const int dist = DescriptorDistance(dMP,d);

                    if(dist<bestDist)
                    {
                        bestDist=dist;
                        bestIdx2=i2;
                    }
                }

                // 详见SearchByBoW(KeyFrame* pKF,Frame &F, vector<MapPoint*> &vpMapPointMatches)函数步骤4
                if(bestDist<=TH_HIGH)
                {
                    CurrentFrame.mvpMapPoints[bestIdx2]=pMP; // 为当前帧添加MapPoint
                    nmatches++;

                    if(mbCheckOrientation)
                    {
                        float rot = LastFrame.mvKeysUn[i].angle-CurrentFrame.mvKeysUn[bestIdx2].angle;
                        if(rot<0.0)
                            rot+=360.0f;
                        int bin = round(rot*factor);
                        if(bin==HISTO_LENGTH)
                            bin=0;
                        assert(bin>=0 && bin<HISTO_LENGTH);
                        rotHist[bin].push_back(bestIdx2);
                    }
                }
            }
        }
    }

    //Apply rotation consistency
    if(mbCheckOrientation)
    {
        int ind1=-1;
        int ind2=-1;
        int ind3=-1;

        ComputeThreeMaxima(rotHist,HISTO_LENGTH,ind1,ind2,ind3);

        for(int i=0; i<HISTO_LENGTH; i++)
        {
            if(i!=ind1 && i!=ind2 && i!=ind3)
            {
                for(size_t j=0, jend=rotHist[i].size(); j<jend; j++)
                {
                    CurrentFrame.mvpMapPoints[rotHist[i][j]]=static_cast<MapPoint*>(NULL);
                    nmatches--;
                }
            }
        }
    }

    return nmatches;
}

参考文献

ORB-SLAM2从理论到代码实现(五):ORBmatcher.cc程序详解_波波菠菜的博客-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值