numpy.unique()使用方法

numpy.unique()函数用于处理数组中的重复元素,可以返回排好序的独特元素,以及它们在原数组中的索引和计数。在不同维度的数组上操作,并支持返回元素出现的次数和原始位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

numpy.unique() 函数接受一个数组,去除其中重复元素,并按元素由小到大返回一个新的无元素重复的元组或者列表。

1. 参数说明

numpy.unique(ar, return_index=False, return_inverse=False, return_counts=False, axis=None, *, equal_nan=True)

ar:输入数组,除非设定了下面介绍的axis参数,否则输入数组均会被自动扁平化成一个一维数组

return_index:(可选参数,布尔类型),如果为True则结果会同时返回被提取元素在原始数组中的索引值(index)。

return_inverse:(可选参数,布尔类型),如果为True则结果会同时返回元素位于原始数组的索引值(index)。

return_counts:(可选参数,布尔类型),如果为True则结果会同时每个元素在原始数组中出现的次数。

axis:计算唯一性时的轴

返回值:返回一个排好序列的独一无二的数组。

2. 示例

2.1. 一维数组

np.unique([1, 1, 2, 2, 3, 3])
a = np.array([[1, 1], [2, 3]])

结果

array([1, 2, 3])

2.2. 二维数组

a = np.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]])
np.unique(a, axis=0)

结果

array([[1, 0, 0], [2, 3, 4]])

2.3. 返回索引

a = np.array(['a', 'b', 'b', 'c', 'a'])
u, indices = np.unique(a, return_index=True)

结果

array([0, 1, 3])
array(['a', 'b', 'c'], dtype='<U1')

2.4. 重建输入矩阵

a = np.array([1, 2, 6, 4, 2, 3, 2])
u, indices = np.unique(a, return_inverse=True)
u[indices]

结果

array([1, 2, 3, 4, 6])
array([0, 1, 4, 3, 1, 2, 1])
array([1, 2, 6, 4, 2, 3, 2])

2.5. 同时返回索引和计数

此时需要返回三个变量,分别是统计值、计数、索引,按之前的经验第一个是统计值,后面两个的顺序不太清楚。

coordinates, inv_indices, counts = np.unique(point_coordinates, return_inverse=True, return_counts=True, axis=0)

参考文献

numpy.unique()函数_勤奋的大熊猫的博客-CSDN博客_numpy.unique

numpy.unique — NumPy v1.24 Manual

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值