FinMamba:用于股票趋势预测的市场感知增强型多层次 Mamba 模型

FinMamba: Market-Aware Graph Enhanced Multi-Level Mamba for Stock Movement Prediction

股票价格受多种因素影响,如投资者行为、经济指标、政治事件和全球新闻,导致高波动性和复杂性,使得准确预测具有挑战性。传统机器学习方法需专家设计特征,难以捕捉股票间复杂依赖关系。深度学习方法通过结合股票特征与股票间相关性,展现出克服传统方法局限性的潜力。

本文提出FinMamba模型,结合市场感知图(MAG)和多层Mamba(MLM),有效捕捉多维度的股票关系和模式特征。FinMamba通过整合静态先验和动态后验信息,利用市场指数反馈优化关系,进行多层次时间依赖建模。在美国和中国股市的实验表明,FinMamba在性能和计算效率上均表现优越,提供了股票模式动态的可视化洞察。

图片

摘要

结合股票特征与股票间相关性已成为有效的股票走势预测方法,但金融数据面临低信噪比和市场动态复杂性挑战。现有模型未能适应市场条件下股票间关系的动态变化,且难以从长历史数据中提取有益模式,效率和内存消耗问题突出。

本文提出FinMamba框架,基于Mamba-GNN,进行市场感知和多层次混合股票走势预测。通过动态图学习股票间关系的变化,结合市场趋势的修剪模块,提升模型适应性。多层次Mamba机制选择性丢弃无关信息,重置状态以高效回忆多时间尺度的历史模式,优化预测。在美股和中股市场的实验表明,FinMamba在预测准确性和交易盈利性上达到最优,同时保持低计算复杂度。

简介

股票价格受多种因素影响,如投资者行为、经济指标、政治事件和全球新闻,导致高波动性和复杂性,使得准确预测具有挑战性。传统机器学习方法需专家设计特征,难以捕捉股票间复杂依赖关系。深度学习方法通过结合股票特征与股票间相关性,展现出克服传统方法局限性的潜力。现有深度学习方法仍存在不足之处。

股票市场中的协同效应使相关股票常常同步波动,影响因素包括行业动态、监管政策和宏观经济环境。现有方法依赖不完整的先验知识,可能导致偏差,单纯按行业分类忽视跨行业的宏观经济影响。股票关系是动态的,静态模型难以准确反映市场波动,后验方法可能导致虚假相关。

**不同市场条件下多方面的股票间关系。**部分研究提出基于图的结构,结合静态先验相关性和动态后验相关性,以更全面地捕捉股票间的依赖关系。宏观经济市场对股票关系的影响常被忽视,金融危机期间同一行业股票的相关性增强。市场指数在动荡时期加剧宏观经济条件对股票表现的影响,关键于动态关系的驱动。提出图优化策略,通过市场指数反馈调整股票关系建模,保留主导边并修剪不反映动态变化的边,以实现更灵活的预测。

图片

**时效性约束下面向模式的依赖关系。**股票价格缺乏规律性,低信噪比使得相似模式在不同时间段和幅度中出现,传统Transformer模型在捕捉平滑趋势时容易受到异常值的影响。Mamba模型通过选择性机制有效捕捉历史时间模式,适合动态序列建模,尤其在股票价格预测中表现出色,且计算复杂度低于Transformer。股票价格在不同时间层次上表现出不同特征,从微观到宏观层面,短期受市场微观结构影响,中期受公司表现和行业趋势影响,长期受宏观经济因素驱动。

图片

本文提出FinMamba模型,结合市场感知图(MAG)和多层Mamba(MLM),有效捕捉多维度的股票关系和模式特征。FinMamba通过整合静态先验和动态后验信息,利用市场指数反馈优化关系,进行多层次时间依赖建模。在美国和中国股市的实验表明,FinMamba在性能和计算效率上均表现优越,提供了股票模式动态的可视化洞察。

相关工作

股票走势预测

近年来,深度学习在股市投资中的应用日益增加,研究主要集中在股票价格预测模型的实现与优化。结合股票特征与股票间相关性已成为有效的预测方法。THGNN利用时间异构图框架提取价格历史和关系信息。MASTER通过学习方法挖掘瞬时和跨时间的股票相关性。CI-STHPAN基于动态时间规整构建相似股票的无关通道超图。现有方法可能忽视个股与市场指数之间的关系在市场波动时的变化特征。

Mamba和状态空间模型

状态空间模型(SSMs)在序列建模中表现出色,Mamba利用选择性SSMs和硬件优化算法在自然语言处理和计算机视觉等领域取得了良好效果。Timemachine通过四个SSM模块结合全球和局部上下文信息进行时间序列预测。Chimera结合二维SSMs和不同离散化过程,动态建模依赖关系。

Mamba在量化交易中的应用仍处于初期,MambaStock用于个股建模,SAMBA利用双向Mamba块捕捉长期依赖。本研究通过多层投影建模不同时间跨度的相似股票模式,结合股票间关系和市场影响,提升股票走势预测。

问题定义

**股票上下文定义:**股票集合为 ( S = { s_1, s_2, …, s_N } ),其中 ( s_i ) 为特定股票,( N ) 为股票总数,( L ) 为回溯窗口长度,( F ) 为特征数量。每个股票在交易日 ( t ) 的数据为 ( s_{it} \in R^F ),其中收盘价 ( p_{it} ) 是特征之一。

**收益率计算:**一日收益率 ( r_{it} = \frac{p_{it} - p_{i(t-1)}}{p_{i(t-1)}} )。在交易日 ( t ) 上,股票得分的最佳排名为 ( Y_t = { y_{t1} \geq y_{t2} \geq … \geq y_{tN} } )。

**股票排名关系:**若 ( r_{it} \geq r_{jt} ),则 ( y_{it} \geq y_{jt} ),高排名股票预期获得更高投资收益。

**行业衰减矩阵:**行业衰减矩阵 ( D ) 旨在增强行业内相似性,为同一二级行业 ( S_e(·) ) 和一级行业 ( P_r(·) ) 的公司分配不同的衰减系数。行业趋势一致性示例:同一二级行业内的股票趋势一致,一级行业如软件与服务、半导体在某些时期也表现出相似趋势,反映更高层次的关系。

图片

**动态股票相关图(DSCG):**用于捕捉和表示股票之间的日常关系变化,定义为G = {𝑔𝑡},其中𝑔𝑡包含节点集V(股票)和边集E(股票相关性),边的权重𝐴𝑡[𝑖,𝑗]表示在交易日𝑡的关系。

**市场指数(𝑀):**是跟踪特定宏观经济金融市场表现的统计指标。研究发现,市场指数下跌时,股票间的相关性增强,反之则减弱;例如,2020年3月COVID-19疫情导致市场流动性危机,股票相关性显著上升。

**假设:**当市场下跌时,系统性风险上升,投资者悲观情绪加剧,导致股票间的同步性和相关性增加;而市场上涨时,乐观情绪促使资金分散投资,降低相关性。

**问题:**股票趋势预测,目标是基于股票特定信息学习排名函数,以预测次日每只股票的预期利润。

方法

FinMamba架构包括市场感知图和多层Mamba。市场感知图提取股票在特定市场条件下的短期和长期依赖关系。多层Mamba有效捕捉不同层次的相似股票趋势模式。

图片

市场感知图

**动态股票相关图生成:**通过后验序列相关性(𝑄)和行业关系(𝐷)构建动态股票相关性图,使用斯皮尔曼系数计算股票间相似度,形成相似度矩阵𝑄。𝑄表示短期关系,𝐷表示长期关系,最终生成邻接矩阵𝐴𝑡。

图片

图片

**市场感知图稀疏化:**股票间的互动关系随市场变化而动态调整。提出市场感知图稀疏化模块,通过市场信息自动选择重要的股票关系,使用市场指数的均值计算稀疏水平,最终对生成的完全连接图进行自适应修剪,保留主要的𝐾个相关性。

图片

图片

**注意聚合图:**在生成一组DSCGG后,我们利用多头注意机制来聚合图结构中相邻节点的消息。Con-cretely,为每个股票𝑠𝑖(节点𝑣𝑖)交易日𝑡,我们computethe注意系数𝛼𝑡𝑖𝑗周边股票𝑠𝑗(节点𝑣𝑗),表示边缘的重要性𝑒𝑡𝑖𝑗裁剪图𝑔𝑡𝑓𝑖𝑛𝑎𝑙。

图片

然后我们将节点𝑣𝑖using关注系数的相邻节点的特征进行聚合,得到一个相邻表示

图片

我们有了原始表示𝑠𝑡和相邻表示<s:2>𝑡之间的关系,我们将它们连接起来,得到stock-embedding(𝑠𝑡| b1𝑡)。

多层次的Mamba

Mamba方法通过输入依赖选择机制平衡短期和长期依赖,适合建模股票数据中的相似模式。股票数据在不同时间尺度上表现出不同的时间变化,日波动受月经济趋势和年市场周期影响。

图片

图片

设计了多层次Mamba(Multi-Level Mamba),通过k个线性映射提取不同粒度的特征。每个层次的输出通过Mamba块生成响应,利用连续状态空间机制。最终通过线性层预测下一个交易日的得分,形成时间维度上的预测结果Y。多层状态空间机制使FinMamba能够在不同层次上学习相似股票模式,整合多层次序列的预测能力。

优化目标

FinMamba的目标是预测所有N个股票在交易日t的正回报𝑦𝑡,通过结合点对点回归损失和成对排名损失进行整体优化。

图片

为了有效捕捉动态图结构中的相关性并解决图信息瓶颈问题,采用GIB损失L𝐺𝐼𝐵,最小化聚合嵌入与原始输入之间的互信息。

图片

最终的端到端损失函数为

图片

实验

实验设置

**数据集:**研究涵盖美国和中国股市,使用S&P 500、NASDAQ 100、CSI 300和CSI 500的历史日级市场信息(2018-2023)。

**基线模型:**与FinMamba比较的模型包括经典策略(BLSW、CSM)、深度强化学习(AlphaStock、DeepPocket)、深度学习(Transformer、Mamba等)和时间序列预测方法(PatchTST、iTransformer等)。

**评估指标:**使用年回报率(ARR)、年波动率(AVol)、最大回撤(MDD)、年夏普比率(ASR)和信息比率(IR)来评估模型表现。

**实施细节:**实验在NVIDIA V100 GPU上进行,使用PyTorch,GNN层数为2,窗口大小为20。

**交易协议:**采用日常买入-持有-卖出策略,基于预测得分进行股票排名和交易,未考虑交易成本。

实验结果

FinMamba在大多数指标上优于其他方法,显示出其在股票趋势预测中的优势。深度学习的时间序列预测方法(如Crossformer和iTransformer)未能利用股票间的图关系,导致性能不足,且缺乏实时决策和动态反馈机制。图基量化投资方法(如THGNN、VGNN和CI-STHPAN)通过捕捉股票间复杂的互动和依赖关系,显著提升预测性能。

图片

FinMamba基于市场反馈优化股票间依赖关系,表现优于MASTER,显示市场信息在优化投资组合策略中的重要性。FinMamba在ARR、ASR、CR和IR等指标上表现出色,同时在MDD上也表现强劲,证明其有效捕捉复杂的非线性市场行为。

消融分析

在CSI 500和NASDAQ 100数据集上进行的消融实验表明,行业衰减矩阵和市场感知稀疏化模块对模型性能至关重要。忽略动态股票相关性或将Mamba视为纯时间序列预测任务会导致性能下降。

图片

将FinMamba替换为Transformer后,性能略有下降,表明FinMamba在捕捉相似股票趋势模式方面表现优越。FinMamba有效捕捉强的组内相关性,降低噪声影响,适合建模具有重复模式的股票数据。FinMamba在内存使用和推理时间上表现轻量高效,满足算法交易的时效性要求。

图片

市场感知图中的稀疏度级别𝜅

市场感知图稀疏化效果显著。市场指数高时,股票间关系减弱,保留边数少。市场指数低时,股票间关系增强,保留边数多。

图片

参数的敏感性

增加回溯期可提升性能,但超过一定长度后会引入噪声,降低信息捕获效果。增加GNN层数和MLM层级也呈现类似效果。hinge loss在学习排名信息上更有效,提升排名性能,但受限于MSE损失,限制了预测准确性。

图片

案例分析

2023年9月15日,汽车工人联合会(UAW)对通用汽车、福特和斯特兰蒂斯发起首次同时罢工,预计持续一个半月。罢工将影响这些传统汽车制造商与特斯拉等非工会汽车制造商的竞争能力。GM与F的股票在所有时期保持强相关,反映出它们作为传统汽车巨头的紧密联系。TSLA与GM和F的相关性在第一阶段较弱,可能因其市场定位和增长前景不同。随着罢工持续和竞争加剧,TSLA与GM和F的相关性在后续阶段显著增强,显示出股票间的相互依赖性。

图片

总结

本文提出新框架FinMamba,结合市场感知图和多层Mamba架构。通过对CSI、NASDAQ和S&P等真实股票市场数据的分析,验证FinMamba在金融时间序列和动态关系图特征提取中的有效性。结果显示FinMamba在不同市场环境下对股票走势预测的潜力。未来将进一步探索Mamba架构在量化交易中的应用。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值