高斯牛顿法和LM算法异同示例

LM(Levenberg-Marquardt)算法和高斯牛顿(Gauss-Newton)算法是两种用于非线性最小二乘问题的优化算法,它们也有一些相似之处

  1. 迭代优化:LM算法和高斯牛顿算法都使用迭代的方式来优化参数值,以逐步减小拟合残差。

  2. 非线性拟合:这两种算法都适用于非线性函数的拟合任务,在拟合参数化模型与观测数据之间的差异时表现出良好的效果。

  3. 基于梯度的优化:高斯牛顿算法和LM算法都利用了目标函数的梯度信息。高斯牛顿算法使用一阶导数(Jacobian矩阵)来近似目标函数,而LM算法在梯度下降方向上引入了一个调节因子。

  4. 局部搜索:这两种算法都是局部搜索方法,即在每次迭代中更新参数值以接近局部最优解。

虽然LM算法和高斯牛顿算法在实现细节和收敛性质上存在差异,但它们都属于非线性最小二乘优化问题的常用方法,并且共享一些相似的思想和原理。

LM(Levenberg-Marquardt)算法和高斯牛顿(Gauss-Newton)算法都是用于非线性最小二乘问题的优化算法,它们在计算方式和收敛性质上存在一些区别

  1. 计算方式:

    • 高斯牛顿算法通过迭代地线性近似非线性函数,将非线性最小二乘问题转化为一系列线性最小二乘子问题。每次迭代,通过求解线性系统来更新参数值。
    • LM算法则结合了高斯牛顿算法和梯度下降算法的思想。在每次迭代中,LM算法通过权衡高斯牛顿算法和梯度下降算法的更新步长,以更好地适应不同情况下的问题。
  2. 收敛性质:

    • 高斯牛顿算法在参数空间中可能收敛到局部极小值,因为它依赖于二阶导数信息,而二阶导数矩阵的正定性不一定成立。
    • LM算法通过引入一个调节因子(也称为阻尼因子),使得在接近极小值时能够更好地探索参数空间。这样的机制可以提供更好的全局收敛性,并且对初始参数的选择不太敏感。

总结起来,高斯牛顿算法是一种更简单和更快速的迭代方法,但可能收敛到局部极小值。而LM算法则更加复杂一些,在计算上稍微耗时,但具有更好的全局收敛性能。在实际应用中,可以根据问题的特点选择适合的优化算法。

以下是使用C++实现高斯牛顿法对一组数据进行拟合的示例代码:

#include <iostream>
#include <Eigen/Dense>

using namespace Eigen;

// 高斯函数模型
double gaussian(double x, double a, double b, double c) {
    return a * exp(-(x - b) * (x - b) / (2 * c * c));
}

// 高斯牛顿拟合算法
void fitGaussian(const VectorXd& xData, const VectorXd& yData, double& a, double& b, double& c) {
    int n = xData.size();
    int m = 3; // 参数个数

    MatrixXd J(n, m);   // 雅可比矩阵
    VectorXd residual(n);  // 残差向量
    VectorXd delta(m);  // 参数增量向量

    // 设定初始参数值
    a = 1.0;
    b = 0.0;
    c = 1.0;

    // 设置最大迭代次数和收敛阈值
    int maxIter = 100;
    double epsilon = 1e-6;

    for (int iter = 0; iter < maxIter; ++iter) {
        // 构造雅可比矩阵和残差向量
        for (int i = 0; i < n; ++i) {
            double xi = xData(i);
            double residual_i = yData(i) - gaussian(xi, a, b, c);

            J(i, 0) = -residual_i / a;
            J(i, 1) = residual_i * (xi - b) / (c * c);
            J(i, 2) = residual_i * (xi - b) * (xi - b) / (c * c * c);
            residual(i) = residual_i;
        }

        // 计算参数增量
        delta = (J.transpose() * J).inverse() * J.transpose() * residual;

        // 更新参数估计值
        a += delta(0);
        b += delta(1);
        c += delta(2);

        // 判断是否收敛
        if (delta.norm() < epsilon)
            break;
    }
}

int main() {
    // 原始数据
    VectorXd xData(10);
    VectorXd yData(10);
    xData << 1, 2, 3, 4, 5, 6, 7, 8, 9, 10;
    yData << 0.98, 1.89, 3.02, 4.15, 4.97, 6.05, 6.92, 8.01, 8.94, 10.02;

    // 拟合参数
    double a, b, c;
    fitGaussian(xData, yData, a, b, c);

    // 输出拟合结果
    std::cout << "Fitted parameters:\n";
    std::cout << "a = " << a << "\n";
    std::cout << "b = " << b << "\n";
    std::cout << "c = " << c << "\n";

    return 0;
}

输出:1 3 2

在这个示例中,我们定义了一个高斯函数gaussian()用于描述高斯函数模型。fitGaussian()函数实现了高斯牛顿拟合算法,其中根据雅可比矩阵和残差计算参数增量,并根据增量更新参数估计值。主函数中给出了一组原始数据,然后调用fitGaussian()函数进行拟合。最后,输出拟合结果。

需要注意的是,这只是一个简单的示例,实际应用中可能需要根据具体情况来选择合适的模型和参数优化算。

以下是使用Levenberg-Marquardt (LM) 算法进行高斯函数拟合的示例代码:

#include <iostream>
#include <Eigen/Dense>
#include <unsupported/Eigen/LevenbergMarquardt>

using namespace Eigen;

// 高斯函数模型
struct GaussianModel {
    template<typename T>
    bool operator()(const T* const x, T* residual) const {
        T a = params[0];
        T b = params[1];
        T c = params[2];

        residual[0] = y - a * exp(-(x[0] - b) * (x[0] - b) / (2 * c * c));
        
        return true;
    }

    double y;
    Vector3d params;
};

// 高斯牛顿拟合算法
void fitGaussian(const VectorXd& xData, const VectorXd& yData, double& a, double& b, double& c) {
    int n = xData.size();

    Vector3d params;
    params << 1.0, 0.0, 1.0; // 初始参数值

    // 定义 LM 算法参数
    NumericalDiff<GaussianModel> numericalDiff;
    LevenbergMarquardt<NumericalDiff<GaussianModel>> lm(numericalDiff);
    lm.parameters.maxfev = 100; // 最大迭代次数
    lm.parameters.xtol = 1e-6; // 收敛阈值

    // 构造问题并求解
    GaussianModel model;
    model.params = params;
    
    for (int i = 0; i < n; ++i) {
        model.y = yData(i);
        VectorXd x(1);
        x << xData(i);
        lm.minimize(x, model);
        params = model.params;
    }

    // 更新拟合结果
    a = params[0];
    b = params[1];
    c = params[2];
}

int main() {
    // 原始数据
    VectorXd xData(10);
    VectorXd yData(10);
    xData << 1, 2, 3, 4, 5, 6, 7, 8, 9, 10;
    yData << 0.98, 1.89, 3.02, 4.15, 4.97, 6.05, 6.92, 8.01, 8.94, 10.02;

    // 拟合参数
    double a, b, c;
    fitGaussian(xData, yData, a, b, c);

    // 输出拟合结果
    std::cout << "Fitted parameters:\n";
    std::cout << "a = " << a << "\n";
    std::cout << "b = " << b << "\n";
    std::cout << "c = " << c << "\n";

    return 0;
}

在这个示例中,我们使用了Eigen库中的LevenbergMarquardt类来实现LM算法。首先定义了一个GaussianModel结构体,其中重载了括号运算符,该运算符计算残差并返回给LM算法。然后,在fitGaussian()函数中,构造了一个LevenbergMarquardt对象并设置了最大迭代次数和收敛阈值。接下来,使用该对象对每个数据点进行拟合,并更新参数估计值。最后输出拟合结果。

请注意,为了使用LM算法,需要在代码中添加Eigen库的相关头文件,并使用命令`-I /path

具体原理可参考:https://zhuanlan.zhihu.com/p/421272861?utm_id=0

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
高斯牛顿法(Gauss-Newton Method)和列文伯格-马夸尔特法(Levenberg-Marquardt Method)都是非线性最小二乘问题的优化算法,用于求解参数估计或曲线拟合问题。它们的主要区别在于迭代步骤中如何计算参数的更新。 1. 高斯牛顿法: - 高斯牛顿法使用线性化的方法来逼近非线性最小二乘问题。它通过将目标函数在当前参数点进行泰勒展开,并忽略高阶项来近似求解。 - 在每个迭代步骤中,高斯牛顿法首先计算目标函数的雅可比矩阵,然后通过求解线性最小二乘问题得到参数的更新量。这个线性最小二乘问题可以通过求解正规方程或使用其他线性代数方法来实现。 - 高斯牛顿法对于具有良好初始值的问题通常收敛速度较快,但对于存在奇异值或初始值较差的问题可能会出现收敛困难或局部最小值。 2. 列文伯格-马夸尔特法: - 列文伯格-马夸尔特法是对高斯牛顿法的改进,旨在解决高斯牛顿法中可能出现的收敛困难问题。 - 在每个迭代步骤中,列文伯格-马夸尔特法引入了一个调节参数 (λ) 来平衡高斯牛顿法的线性化近似和梯度信息的贡献。 - 当 λ 接近于零时,列文伯格-马夸尔特法退化为高斯牛顿法;当 λ 较大时,它更加依赖梯度信息来进行参数更新。通过调节 λ 的值,可以在迭代过程中平衡收敛速度和收敛稳定性。 - 列文伯格-马夸尔特法的优势在于对于初始值的选择较为鲁棒,可以更好地处理奇异值和初始值较差的问题。 总的来说,高斯牛顿法是列文伯格-马夸尔特法的一种特例,而列文伯格-马夸尔特法通过引入调节参数,提供了更好的稳定性和收敛性能。但在实际应用中,具体选择哪种方法取决于问题的特性以及对收敛速度和稳定性的要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值