FOC中电流环调试的宝贵经验总结

原文:https://blog.csdn.net/u010632165/article/details/104907263/

本文也许能帮你在调试FOC电流环的时候给你带来一些帮助和思路。
如果本文帮到了您,请帮忙点个赞 👍👍👍;
如果本文帮到了您,请帮忙点个赞 👍👍👍;
如果本文帮到了您,请帮忙点个赞 👍👍👍;

文章目录
1 系统架构
2 转矩模型
2.1 交直轴电压方程
2.2 转矩方程
3 PI 控制器
4 参数调节
4.1 相关理论
4.2 调试过程
5 总结
1 系统架构
系统架构是双闭环架构,从内而外分别是电流环,速度环或位置环,有感FOC算法可以参考这篇文章《有感FOC算法学习与实现总结》。所以在这环环相扣的系统中,内环的电流环显得格外重要,电流环需要快速响应,稳点性好的特点。
系统架构图如下:


在FOC算法中,将系统交流同步电机的控制系统解耦为以转子为参考坐标的DQ交直轴旋转坐标,相关坐标变换可以参考《FOC中的Clarke变换和Park变换详解(动图+推导+仿真+附件代码)》,因此最终只需要控制I q I_qI 
q
​    
 ,I d I_dI 
d
​    
 就可以像控制直流电机一样的方式对交流同步电机进行控制。
这里比较关键的是如何对I q I_qI 
q
​    
 ,I d I_dI 
d
​    
 进行PID控制器的参数整定。

2 转矩模型
2.1 交直轴电压方程
这里先不讨论前面的电流采样和坐标变换,在得到I q I_qI 
q
​    
 和I d I_dI 
d
​    
 之后,就要通过PI控制器,具体如下:

I q I_qI 
q
​    
 在经过PI控制器之后,可以得到 U q U_qU 
q
​    
 ;
I d I_dI 
d
​    
 在经过PI控制器之后,可以得到 U d U_dU 
d
​    
 ;
这里也就是为什么使用PI控制器的原因了,下面看一下在电机模型中,I q I_qI 
q
​    
 和U q U_qU 
q
​    
 ,I d I_dI 
d
​    
 和U d U_dU 
d
​    
 的关系如下;
{ u d = R i d + L d d i d d t − w r L q i q u q = R i q + L q d i q d t + w r ( ψ d + L d i d )
⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪ud=Rid+Lddiddt−wrLqiquq=Riq+Lqdiqdt+wr(ψd+Ldid)
{ud=Rid+Lddiddt−wrLqiquq=Riq+Lqdiqdt+wr(ψd+Ldid)





​    
  

d
​    
 =Ri 
d
​    
 +L 
d
​    
  
dt
di 
d
​    
 
​    
 −w 
r
​    
 L 
q
​    
 i 
q
​    
 

q
​    
 =Ri 
q
​    
 +L 
q
​    
  
dt
di 
q
​    
 
​    
 +w 
r
​    
 (ψ 
d
​    
 +L 
d
​    
 i 
d
​    
 )
​    
 
d dd 轴:

u d u_du 
d
​    
 为电机直轴电压;
i d i_di 
d
​    
 为电机直轴电流;
L d L_dL 
d
​    
 为电机直轴电感;
q qq 轴:

u q u_qu 
q
​    
 为电机直轴电压;
i q i_qi 
q
​    
 为电机直轴电流;
L d L_dL 
d
​    
 为电机直轴电感;
其他:

R RR 为电子定子电阻;
ψ d \psi_dψ 
d
​    
 为永磁体的磁链,因为磁链方向和 d dd 轴方向相同,因此后面都用ψ d \psi_dψ 
d
​    
 表示;
该空间抽象如下图所示;


2.2 转矩方程
永磁同步电机的转矩方程为:
T e = n p i q [ i d ( L d − L q ) + ψ d ] T_e = n_pi_q[ i_d(L_d-L_q)+\psi_d]

e
​    
 =n 
p
​    
 i 
q
​    
 [i 
d
​    
 (L 
d
​    
 −L 
q
​    
 )+ψ 
d
​    
 ]

关于永磁同步电机的类型区别可以参考《永磁同步电机 spmsm 和 ipmsm 的区别总结》,本文只讨论SM-PMSM,表贴式的永磁同步电机因为隐极特性的存在所以L d = L q L_d = L_qL 
d
​    
 =L 
q
​    
 ;所以电机的输出转矩方程可以简化为:
T e = n p i q ψ d T_e = n_pi_q\psi_d

e
​    
 =n 
p
​    
 i 
q
​    
 ψ 
d
​    
 

n p n_pn 
p
​    
 为电机极对数;

所以不难发现,n p n_pn 
p
​    
 为常数,ψ d \psi_dψ 
d
​    
 为永磁体的磁链,在无弱磁的情况下,通常为常量;
因此这里在另i d = 0 i_d = 0i 
d
​    
 =0的时候,只要控制 i q i_qi 
q
​    
 ,就实现对了电机输出转矩的控制。

补充一下运动方程对于转速控制的解释;

3 PI 控制器
i d i_di 
d
​    
 和i q i_qi 
q
​    
 经过PI控制器之后的输出被变换成实际的电压V d V_dV 
d
​    
 和V q V_qV 
q
​    
 ,作用于后续的电机模型,因此通过 u d u_du 
d
​    
  和 u q u_qu 
q
​    
  电压方程可以知道,PI控制器对电机的参数依赖性比较强,同样的,因此这里有几种方法可以进行参数的整定;

直接整定法,通过经验试凑进行整定;
参数测量法,先测量电机L d L_dL 
d
​    
 ,L q L_qL 
q
​    
 ,R RR等参数,大致计算出PI控制器参数范围,然后进行细调整;
自适应PI参数,这是在TI文档看到的一种方法,能力有限,暂不能展开;
所以,本文最终介绍的是经验试奏法。

4 参数调节
具体按照经典的PID参数调节方法即可,先调节K p K_pK 
p
​    
 参数,然后再K i K_iK 
i
​    
 参数,这里需要时刻将反馈值和设定值进行比较,直到达到满意的效果位置。

4.1 相关理论
先看PID整定的口诀:

参数整定找最佳,从小到大顺序查
先是比例后积分,最后再把微分加
曲线振荡很频繁,比例度盘要放大
曲线漂浮绕大湾,比例度盘往小扳
曲线偏离回复慢,积分时间往下降
曲线波动周期长,积分时间再加长
曲线振荡频率快,先把微分降下来
动差大来波动慢,微分时间应加长
理想曲线两个波,前高后低四比一
一看二调多分析,调节质量不会低

4.2 调试过程
由于L d = L q L_d = L_qL 
d
​    
 =L 
q
​    
 ,这里通过先调试D轴,将Q轴的PI控制器设置为零,这样可以排除Q轴的影响,在单轴达到比较好的响应效果之后,将D轴的PI控制器参数拷贝一份送给Q轴的PI控制器即可,这里很关键;

只加入比例环节,设定值为1000:
单纯加入比例环节的时候,可以将K p K_pK 
p
​    
 的系数逐渐增大,会发现反馈值逐渐靠近给定值,因为没有积分环节的作用,最终反馈值无法达到给定值;

加入积分环节
发现系统虽然存在超调,但是最终反馈可以稳定在给定值;

对于较大的超调可以适当减少K p K_pK 
p
​    
 参数,或者使用积分分离PID进行控制;

关于超调
因为在启动过程中,电流会很大,所以在频繁启动和制动的过程中,如果无法减少超调,就会出现启动直接过流的情况,这里一定要想办法避免。
接下来逐步修改参数,直到达到自己满意的效果为止,只能慢慢积累调试的经验,没有太多捷径可言。

5 总结
本文介绍了表贴式永磁同步电机FOC矢量控制中电流环PI控制器参数的调试过程,电流环的性能直接影响到整体系统的性能,所以该环节是十分关键的,另外传统的PI控制器可能无法满足系统的性能要求,需要在此基础引入更多的优化算法,比如积分先行,积分分离,积分限幅,模糊PID,神经网络PID等等,具体就需要根据系统的资源和系统指标进行选择。

笔者能力和水平有限,文中难免有错误和纰漏之处,请大佬们不吝赐教;
创作不易,如果本文帮到了您;
如果本文帮到了您,请帮忙点个赞 👍👍👍;
如果本文帮到了您,请帮忙点个赞 👍👍👍;
如果本文帮到了您,请帮忙点个赞 👍👍👍;


小麦大叔


CSDN签约作者
有梦想的咸鱼
更多干货,欢迎关注公众号:[小麦大叔]
一个热衷技术的工程师的原创分享,
涉及内容包括但不限于嵌入式、物联网、单片机、编程技术、PCB、硬件设计等等。
来交个朋友?
————————————————
版权声明:本文为CSDN博主「小麦大叔」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/u010632165/article/details/104907263/

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页