数据标注员是职位,人工智能训练师是职业

    标注猿的第62篇原创    

   一个用数据视角看AI世界的标注猿   


前两篇文章发表之后,有很多小伙伴留言交流主要是针对两个问题的一个是数据标注行业是否还可以创业?我发了一篇文章统一回答了一下小伙伴们比较关注的几个问题。有感兴趣的小伙伴可以看上一篇文章数据标注行业创业还可以么?

另一外一个小伙伴们比较关注的问题就是关注人工智能训练师证书的问题,这篇文章针对人工智能训练师证书的一些问题给大家再讲解一下。主要从一下几个方面进行交流:

  • 新职业为什么叫人工智能训练师而不叫数据标注师?

  • 人工智能训练师职业技能等级标准解读

  • 人工智能训练师职业技能等级证书考评合作的若干问题解答?

一.新职业为什么叫人工智能训练师而不叫数据标注师?

不知道看到新职业的时候,是否有这样的疑问?为什么从业者一开始就叫数据标注员或者数据标注师,但是最终人社部在公布新职业的时候却变成了人工智能训练师了呢?

做过数据标注的或者了解一些人工智能逻辑的小伙伴一定知道,数据标注在整个链路中标注出数据结果不是最终目的,标注好的数据的目的是训练出好的模型,而训练出好的模型的目的是应用在生产生活的场景中起到可以优化生产生活的作用。

从这个角度来看,很容易就可以明确数据标注是整个生产链路中一个基础的环节,而训练是要达到效果和目标必然要多轮迭代的流程。并且是期望通过技术手段可以减少标注总量和标注难度,从而实现AI算法的快速落地的。

虽然这个过程中标注这项工作的确是必然工作,但是场景中的快速迭代更为重要,这一点在小场景中更为突出,这就需要训练师的角色从项目整体需求的角度进行数据处理。通过数据工程的思路利用小样本量的快速迭代方式实现AI算法在更多场景中的落地。

而人工智能想要快速更好的适用于场景的落地需要的更多的应该是人工智能训练师,而非仅仅是标注。

二.人工智能训练师职业技能等级标准解读

了解了职业背景之后我们在看《人工智能训练师国家职业技能标注(2021年版)》相关等级要求。一共分为5个级别,分别是:五级/初级工、四级/中级工、三级/高级工、二级/技师、一级/高级级技师。

如果大家仔细阅读学习了每个级别的等级标准之后,就会非常清晰的认识到其每个级别对能力的要求,也完全符合市场上对此类人才的需求。从人才培养的角度来说就不会把整个行业或者是职业只是笼统的认为是数据标注了

  从上面的要求来看,目前行业内的大部分人员都处于这个阶段,无法自行理解解读项目需求,经过他人培训后可以进行数据标注。

参考薪资:

从这个要求来看,目前符合市面上大部分的质检人员、项目助理级别人员的要求。

参考薪资:

对于这部分的要求,目前大部分供应商层面的项目经理是不具备的,客户方的项目经理基本上是要求具备相应的能力的。可以放宽的是对编写脚本的能力。

参考薪资:

对于这部分的要求,目前市场上基本上就非常少了,已经从执行层面转变成决策层面了,供应商层面是肯定没有这方面的人才,在客户公司里面也是项目负责人的层面才能涉及到或者部分符合。

参考薪资:

  1. 五级/初级工

    我们可以详细解读这部分内容:

    1. 数据采集和处、数据标注,我们可以理解成为是实际业务层面,要求达到的数据基本上就是能进行标注就可以。通过他人培训可以理解和使用标注需求。

    2. 对于标注系统达到熟练使用并解读智能系统相关数字信息。

  2. 四级/中级工

    我们可以详细解读这部分内容:

    1. 在数据采集和处理、数据标注的业务层面核心增加了三种能力:

      1. 梳理、理解需求规范及数据的能力

      2. 审核和纠错的能力

      3. 优化流程能力

    2. 在系统层面,可以利用智能系统进行数据优化、项目管理、数据分析的能力。

  3. 三级/高级工

    我们可以详细解读这部分内容:

    1. 在数据采集和处理、数据标注的业务层面核心增加了三种能力:

      1. 数据处理流程设计优化的能力

      2. 可以根据数据进行特征提取、规范编写的能力

      3. 可以通过工具或者脚本对数据进行测试

    2. 在系统能力层面要求可以对数据进行全面分析并提出系统优化意见或者设计输出解决方案的能力。

    3. 增加了一个大项就是培训与指导的能力,主要是对员工的培训以及实际数据处理过程中遇到问题解答的能力。

  4. 二级/技师

    我们可以详细解读这部分内容:

    1. 在数据采集和处理、数据标注的业务层面核心已经从执行层面向决策层面转换。

      1. 需要结合人工智能技术构建业务架构

      2. 挖掘价值并能提出更好的解决方案

      3. 通过保障数据质量、优化数据结果来提高算法的核心竞争力

    2. 结合业务可以提出解决方案并设计出相应的解决方案实现项目目标

    3. 对三级/高级工可以进行培训指导

  5. 一级/高级技师

    我们可以详细解读这部分内容:

    1. 和二级/技师相比在业务和系统设计层面不仅仅要有挖掘现有业务和数据的能力,更注重的是创新性和对业务产品的前瞻性。可以在复杂的跨业务领域提出设计解决方案并进行落地并且有平台化运营能力。

    2. 在培训指导方面是要对二级/技师进行培训指导

      参考薪资:

      以上就是对目前人工智能训练师职业技能等级标准的一个解析,大家也可以发现一个问题,在我们实际招聘中我们很少用人工智能训练师这个名称。但是实际的要求依然是按照人工智能训练师的等级标注来进行约束的。

      如果想长期在这个行业发展的小伙伴,可以根据职业等级要求的标准来提升自己相关的能力。

三.人工智能训练师职业技能等级证书考评合作的若干问题解答?

因为我目前在协会里面是负责新职业推广的工作,所以针对大家最近关心的问题做一个具体的回答:

  1. 国内是否还有其他职业技能等级类证书

    答:目前没有其他官方在做人工智能训练师职业技能等级证书,但是存在培训类证书、专项技能类证书,且证书里面的职业类型是数据标注师或者人工技术服务数据标注初级等。

  2. 是否有人社部章,是否被认可?

    答:没有人社部章,目前人工智能职业技能等级类证书人社部相关直属部门没有进行考评工作,而是授权第三方协会来进行考评。目前新职业均以这种方式进行推广,如互联网营销师,但是被认可的。

  3. 人工智能训练师职业技能等级证书的作用是什么?

    答:对于合作企业来说,我们做的是职业技能类培训,如果有职业技能类培训资质就需要到当地人社局进行增项,如果没有资质就需要申请资质。不管是增项还是新申请都需要提供相关培训类别的老师,职业技能类提供获取相关证书的即可,而协会颁发的人工智能职业技能等级证书是支持人社局备案要求。

    对于个人来说,证书是要求年限和考评先后顺序的,是在不了解的情况下,相关能力的直接体现。

  4. 考了人工智能训练师证书是否能拿到人社局补助?

    答:由于是新职业,职业技能等级标准去年才发布,目前所有新职业都没有纳入到补助名录里面,但是有些省份是有专项扶持的,是可以提供相关资料进行辅助申请。

    很多从事数据标注供应商的小伙伴,之前没有做过相关培训业务,大部分更关心的是否能拿到证书的补助,如果只是为了拿到这个补助的话,个人认为就需要自身评估好,各地方政府政策不同,可能即使已经加入到名录里面了,也未必能拿到。

  5. 协会会提供哪些支持?

    答:

    1. 人工智能训练师初级课程体系资源,包含课程PPT、课后习题等。(免费)

    2. 实战数据,音频数据50小时,图片1000张,文本2万条。(免费)

    3. 线下工具,包含图片、音频、医疗、文件处理工具等。(免费)

    4. 数据标注需求说明大全1本。(免费)

    5. 线上联合推广。(免费)

    6. 线上课程(选购)

    7. 线下教师培训(选购)

    8. 线上实训平台账号(选购)

  6. 是否收取加盟费?

    答:不收取加盟费,协会不允许收取任何加盟费,但是为了保证合作方可以真实开展业务,需要在合作协议签订时预购部分证书,预购证书可用于后续学员考试进行抵扣。

  7. 证书样例

以上就是对人工智能训练师职业技能等级相关标准和证书的解读以及小伙伴们关心问题的解答,希望可以帮助到各位小伙伴,同时也欢迎小伙伴们留言交流,有机会可以深入合作。

插播一个小广告,接下来会在抖音上分享一些内容,有感兴趣的小伙伴可以关注,抖音搜索名称“AI数据标注猿”或者抖音号“MBZData”,也可以通过下面二维码进行关注。

相关文章阅读:

  1. 数据标注行业创业还可以么?

  2. 从业3年45万年薪的AI训练师是如何养成的?

  3. 数据标注的未来:吴恩达“未来十年AI会以数据为中心”

  4. 自动驾驶采标系列七:复杂场景语义理解-可行驶区域检测

  5. 自动驾驶采标系列六:复杂场景语义理解-交通识别检测技术

-----------------------完---------------------

公众号:AI数据标注猿

知乎:AI数据标注猿

CSDN:AI数据标注猿

微信号:MBZData

抖音号:MBZData

-----------------------完---------------------

关于⼈⼯智能数据标注学习 ⽬录 项⽬⼀:认识数据标注 ⼈⼯智能数据标注主要包括:图像标注,语⾳标注,⽂本标注! 数据标注是借助标注软件,对⼈⼯智能学习数据进⾏加⼯和运⽤的⾏为! 项⽬⼆: 项⽬⼆:图像标注的学习 1.基本命令提⽰符 基本命令提⽰符 cd A:\ 将A盘的当前⽬录改为根⽬录 cd A:\xx 将A盘的当前⽬录改为⼦⽬录xx下 cd ..\98 先返回⽗⽬录,再进⼊⽗⽬录下的98⼦⽬录 cd ..返回到⽗⽬录(注:"."代表当前⽬录 ".."代表⽗⽬录) 以上为⽐较常⽤的命令提⽰符,其他提⽰符就不列出来了,可以⾃⾏上⽹查阅! 2.Anaconda软件的安装 软件的安装 笔记本电脑直接软件商店搜索就 ,台式的话得到官⽹去下载! 安装的时候记得这两个都勾选!以便配置全局变量!!!!!! 3.labelme软件的安装 软件的安装 直接到 直接到Anaconda的命令提⽰框⾥⾯! 的命令提⽰框⾥⾯! 先安装虚拟环境! 激活虚拟环境! conda creat -n Labelme python=3.8 安装Labelme软件 以下基本为labelme的运⾏界⾯! 该软件是英⽂版基本使⽤⽅法就⾃⾏琢磨吧! 4.Labelme软件命令和常⽤的图像数据集 软件命令和常⽤的图像数据集 activate Labelme Pip install labelme==3.16 -i https://pypi.tuna.tsinghua.edu.cn/simple Labelme软件⽣成的JSON⽂件转化为dataset⽂件的操作 5.图像分类 图像分类 ⾸先啊!就是激活环境啦! 然后通过⽂本打开Labelme!!! 命令如下 单双标签都⼀样的打开⽅式! 6.⽬标检测标注 ⽬标检测标注 ⽬标检测标识是指通⼈⼯标注出图像中感兴趣的⽬标,同⼀类的标签中可以有多个,通常使⽤矩形进⾏标注!!!基本有两种类型: 物体的标注和⼈脸的标注但其实操作都⼀样!!!仅仅知识标签和⽂件路劲的问题!!! ⽅法同5差不多! 1建⽴标签⽂本启动Labelme 2通过⽂本打开Labelme 操作代码如下 1 Labelme_json_to_dateset 路径+⽂件名 2 如:Labelme_json_to_dateset D:\1.json 1 //激活环境: activate Labelme 2 //通过⽂本启动Labelme: Labelme --flags D:\flags.txt --nodata 3 //不管怎样还是得根据⽂件路劲来 1 1.激活:activate Labelme 2 2.打开:Labelme --labels D:\labels.txt --nodata --autosave 3 注意:具体⽂件名和路劲应根据相应你建⽴的来填 采⽤矩形框来标注!!! 7.语义分割标注 语义分割标注 语义分割就是对图像中的每个对象都打上标签,如把图像中的⼈,树⽊,草地,天空和动物等都打上对于的标签。语义分割标注需要将 物体的轮廓都标注出来,标注的精度远⾼于⽬标检测标注。 同样如上: 转化为VOC数据集可以时使⽤" Labelme2voc.py"命令 。格式如下 8.实例分割 实例分割 实例分割是⽬标检测和语义分割的结合,即在图像中先将⽬标检测出来(⽬标检测),然后对每个⽬标打上对应的标签(语义分割)。 在语义分割中,不区分属于相同类别的不同⽬标(所有⽬标都标为相同颜⾊),实例分割标注则需要区分同类的不同实例(使⽤不同颜⾊来 区分不同的⼈)。 9.全景分割标注 全景分割标注 全景分割标注是语义分割标注和实例分割标注的结合,既要检测所有⽬标,⼜要区分类别中的不同实例。实例分割只是对图像中的⽬ 标进⾏检测和按照橡素分割,区分不同实例(使⽤不同颜⾊),⽽全景标注分割是对图⽚中的所有物体包括背景都要进⾏检测和分割。 10.视频标注 视频标注 1 2 3 1激活: activate Labelme 4 2打开: Labelme --labels D:\labels1.txt --nodata 5 3同样需要注意⽂件名和路劲 6 4.JSON转为dataset 7 Labelme_json_to_dataset 路劲+JSON⽂件名 8 5如:Labelme_json_to_dataset D:\hello\2021_12_27_001.json 9 10 1 2 命令: python Labelme2voc.py 图像⽬录 ⽣成voc⽬录 --labels labels⽂件路径 3 如下: python d:\Labelme2voc.py D:\Hello\DIRS\semantic_segmentation D:\data_dataset_voc --labels D:\
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI数据标注猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值