升级版本的EchoMimic来了!一张半身照+音频,就能生成带手势的数字人视频。

在之前的文章中已经给大家介绍过蚂蚁集团的开源数字人项目EchoMimic,现在EchoMimic升级到V2版本了,V1仅是用图片和音频生成数字脸,V2就是真正的数字人了。一张半身照片,配上中文或英语音频,就能生成带手势的数字人视频。

EchoMimicV2利用参考图像、音频片段和一系列手部姿势来生成高质量的动画视频,确保音频内容和半身动作之间的连贯性。

视频展示:

相关链接

  • 论文:https://arxiv.org/pdf/2411.10061

  • 代码:https://github.com/antgroup/echomimic_v2

  • 模型:https://huggingface.co/BadToBest/EchoMimicV2

  • 主页:https://antgroup.github.io/ai/echomimic_v2

论文介绍

近期关于人体动画的研究通常涉及音频、姿势或运动图条件,从而实现逼真的动画质量。然而,这些方法往往面临实际挑战,因为额外的控制条件、繁琐的条件注入模块或头部区域驱动的限制。因此,是否有可能在简化不必要条件的同时实现引人注目的半身人体动画。

为此,论文提出了一种半身人体动画方法称为EchoMimicV2,该方法利用一种新颖的音频姿势动态协调策略,包括姿势采样和音频扩散,来增强半身细节、面部和手势表现力,同时减少条件冗余。

方法

EchoMimicV2 的整体流程。 EchoMimicV2 利用参考图像、音频片段和一系列手势来生成高质量的动画视频,确保音频内容和半身动作之间的连贯性。 为了弥补半身数据的稀缺,利用头部部分注意力将头像数据无缝地容纳到训练框架中,这些数据可以在推理过程中被省略。此外,还设计了阶段特定的去噪损失,分别来指导特定阶段动画的运动、细节和低级质量。此外还提出了一个用于评估半身人体动画效果的新基准。大量实验和分析表明,EchoMimicV2 在定量和定性评估方面均超越了现有方法。

效果展示

EchoMimicV2 在给定不同参考图像、手势和音频的情况下的结果。

EchoMimicV2 的结果与姿势驱动的半身人体动画基线进行了比较。

EchoMimicV2 的结果与音频驱动的半身人体动画基线进行了比较。

结论

论文提出了一种有效的 EchoMimicV2 框架来简化的条件下生成引人注目的半身人体动画。通过提出的 APDH 训练策略和时间步长特定的 PhD Loss 实现了音频姿势条件协作和姿势条件简化,同时通过 HPA 无缝增强了面部表情。综合实验表明,EchoMimicV2 在定量和定性结果方面都超过了目前最先进的技术。

<think>好的,用户想了解如何部署EchoMimic_v2,我需要根据提供的引用内容整理步骤。首先,引用3提到了克隆仓库、安装依赖和环境配置。用户可能需要从GitHub克隆项目,然后安装所需的Python包。但引用1和2显示在安装依赖时可能会遇到问题,比如包装不上或者路径需要修改。要注意指导用户正确设置路径,比如替换pip安装命令中的路径为自己的安装位置。 接下来,引用5提到系统要求,特别是Linux x86_64架构,但用户可能使用的是Windows,因为引用4中的示例路径是F盘,而且提到了Windows下的CUDA安装。需要区分不同操作系统的步骤,比如Windows用户需要注意显存要求,至少12GB,推荐16GB,并且可能需要使用int8量化来优化显存使用。 然后,预训练模型和目录结构在引用2中,需要确保用户下载正确的模型文件并放置到指定目录。这部分需要详细说明目录结构,避免用户放错位置导致运行失败。 运行Demo部分,引用2提到执行infer.py,但用户可能需要调整参数或处理路径问题。此外,引用4提到用户可能希望自定义姿态,需要上传参考视频,这部分在部署教程中可能需要额外说明,特别是如何处理姿态文件路径的问题。 问题解决方面,引用3提到依赖安装问题,可能需要用户手动安装某些包或调整版本。例如,如果requirements.txt中的包无法安装,用户需要根据错误信息寻找替代方案或更新pip。 最后,用户可能遇到的常见问题,比如显存不足、路径错误、依赖冲突等,需要给出解决方案。同时,引用4和5提到了MAC和Linux的不同支持情况,需要提醒用户注意系统兼容性。 总结步骤:克隆仓库→安装依赖→下载预训练模型→配置路径和参数→运行Demo→处理常见问题。需要分点清晰说明,并加入注意事项和解决方案,确保用户能逐步完成部署。</think>以下是EchoMimic_v2数字人项目的详细部署指南,整合了官方文档和实际部署经验: ### 一、部署准备 1. **系统要求** - Windows系统需NVIDIA显卡(12G显存以上,推荐16G)[^4] - Linux需x86_64架构(通过`uname -m`命令验证)[^5] - 已安装CUDA驱动和Anaconda/Miniconda[^3] 2. **环境准备** ```bash git clone https://github.com/antgroup/echomimic_v2 cd echomimic_v2 conda create -n echomimic python=3.8 conda activate echomimic ``` ### 二、安装步骤 1. **依赖安装** ```bash # 需修改路径参数(示例路径替换为实际路径) F:\your_path\python.exe -m pip install pip -U pip install -r requirements.txt ``` *注意:若遇包安装失败,可尝试单独安装或调整版本号[^2]* 2. **模型文件配置** 创建预训练模型目录: ``` ./pretrained_weights/ ├── denoising_unet.pth ├── reference_unet.pth ├── motion_module.pth └── ... ``` *需从官方渠道下载模型文件并放入指定目录[^2]* ### 三、运行测试 1. **启动基础Demo** ```bash python infer.py --config='./configs/prompts/infer.yaml' ``` 2. **自定义姿态功能** - 在Gradio界面可上传参考视频实现动作模仿 - 支持手动设置姿态文件路径(默认使用`./data/pose`)[^4] ### 四、常见问题解决 1. **依赖安装失败** - 更新pip:`python -m pip install --upgrade pip` - 手动安装报错包:`pip install package_name==specific_version` 2. **显存不足问题** - 启用int8量化模式 - 降低视频分辨率(建议不低于512x512) 3. **路径配置错误** ```python # 示例路径配置修改位置 config = { "model_path": "./pretrained_weights", "output_dir": "./results" } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AIGC Studio

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值