PyTorch优化算法模块torch.optim的详细介绍

torch.optim 模块是 PyTorch 中用于实现优化算法的组件,主要用于训练神经网络和其他机器学习模型。这个模块提供了多种常用的优化器(Optimizer),如 SGD(随机梯度下降)、Adam、Adagrad 等,这些优化器能够自动根据计算出的梯度更新模型参数。

1. torch.optim 模块内部结构和工作原理

内部结构和工作原理:

  1. Optimizer类与子类:

    • torch.optim.Optimizer 是所有优化器的基础类,它定义了优化器的基本行为和接口。
    • 具体的优化器算法通过继承 Optimizer 类并实现其方法来扩展功能,例如 torch.optim.SGDtorch.optim.Adamtorch.optim.AdamWtorch.optim.RMSprop 等。
  2. 初始化过程:

    • 创建一个优化器实例时,需要传入一个包含模型参数的迭代器(通常是 .parameters() 方法返回的结果)。在内部,优化器会为每个参数维护一个状态字典,其中包含了自适应学习率、动量项等依赖于历史信息的状态变量。
  3. step()方法:

    • 优化器的核心在于其 step() 方法,通常在前向传播后计算完损失函数的梯度后调用。step() 会遍历模型的所有参数,并根据相应的优化策略应用梯度更新。
  4. 参数更新规则:

    • 不同的优化器有不同的参数更新规则。例如:
      • SGD简单地将梯度乘以学习率后累加到参数上。
      • Adam则结合了指数移动平均的梯度和二阶矩,同时对学习率进行动态调整。
  5. 可配置选项:

    • 在创建优化器时可以设置各种超参数,比如学习率(lr)、动量(momentum)、权重衰减(weight_decay)等,它们影响着参数更新的方式和速度。
  6. 状态保存与恢复:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值