torch.optim
模块是 PyTorch 中用于实现优化算法的组件,主要用于训练神经网络和其他机器学习模型。这个模块提供了多种常用的优化器(Optimizer),如 SGD(随机梯度下降)、Adam、Adagrad 等,这些优化器能够自动根据计算出的梯度更新模型参数。
1. torch.optim
模块内部结构和工作原理
内部结构和工作原理:
-
Optimizer类与子类:
torch.optim.Optimizer
是所有优化器的基础类,它定义了优化器的基本行为和接口。- 具体的优化器算法通过继承
Optimizer
类并实现其方法来扩展功能,例如torch.optim.SGD
,torch.optim.Adam
,torch.optim.AdamW
,torch.optim.RMSprop
等。
-
初始化过程:
- 创建一个优化器实例时,需要传入一个包含模型参数的迭代器(通常是
.parameters()
方法返回的结果)。在内部,优化器会为每个参数维护一个状态字典,其中包含了自适应学习率、动量项等依赖于历史信息的状态变量。
- 创建一个优化器实例时,需要传入一个包含模型参数的迭代器(通常是
-
step()方法:
- 优化器的核心在于其
step()
方法,通常在前向传播后计算完损失函数的梯度后调用。step()
会遍历模型的所有参数,并根据相应的优化策略应用梯度更新。
- 优化器的核心在于其
-
参数更新规则:
- 不同的优化器有不同的参数更新规则。例如:
- SGD简单地将梯度乘以学习率后累加到参数上。
- Adam则结合了指数移动平均的梯度和二阶矩,同时对学习率进行动态调整。
- 不同的优化器有不同的参数更新规则。例如:
-
可配置选项:
- 在创建优化器时可以设置各种超参数,比如学习率(
lr
)、动量(momentum
)、权重衰减(weight_decay
)等,它们影响着参数更新的方式和速度。
- 在创建优化器时可以设置各种超参数,比如学习率(
-
状态保存与恢复: