A token attends to another token

The Transformer's attention mechanisms are cleverly designed to explore and exploit the complex web of relationships between all input and output tokens. This arrangement empowers the model to grasp global dependencies and produce contextually accurate outputs even for long sequences.

1. A token attends to another token

In the context of a Transformer model, when a token attends to another token, it refers to the process where a token's representation (context vector) is influenced by the representations of other tokens in the sequence. This occurs through the self-attention mechanism.

Here's a simplified explanation:

  1. Every token in the sequence is first mapped to three vectors: a query, a key, and a value.
  2. The query vector of a token is compared with the key vectors of all other tokens in the sequence through dot product operations. These dot products represent the degree of relevance or alignment between the two tokens.
  3. The dot products are normalized using a softmax function, producing attention weights. These weights indicate how much the current token should attend to each other token in the sequence.
  4. The value vectors of all tokens are then multiplied by their respective attention weights and summed together. This aggregation forms the context vector for the current token.
  5. Thus, when a token attends to other tokens, it absorbs and consolidates the most relevant information from the entire sequence to update its own representation.

In essence, the attending token learns to focus on the parts of the input that are most important for its own interpretation or for predicting the next token in a sequence-to-sequence task, such as machine translation. This allows the model to capture complex dependencies and long-range interactions within the input sequence.

2. A token attending to other tokens

A token attending to other tokens in a Transformer model describes the process by which each token in a sequence receives information from and about other tokens in the sequence. Here's a step-by-step depiction:

  1. Embeddings Transformation: Each token in the input sequence is first embedded and then transformed into three separate vectors - Query, Key, and Value.

  2. Query-Key Comparison: The query vector of a token is compared against the key vectors of all other tokens using dot product calculations. This comparison measures the affinity or relevance between the two tokens.

  3. Attention Weights Generation: The dot products are normalized using a softmax function, generating a set of attention weights. These weights express the relative importance of each token in the sequence to the current token being processed.

  4. Aggregation of Values: The value vectors of all tokens are multiplied by their corresponding attention weights and summed together. This weighted sum constitutes the contextual representation for the token under consideration.

  5. Contextual Understanding: By attending to other tokens in this manner, the token gains a contextual understanding of its place within the sequence, incorporating information from relevant tokens while discounting less important ones.

In essence, when a token attends to other tokens, it is actively integrating the most significant information from across the sequence to enrich its own representation. This mechanism allows the Transformer to consider global dependencies and capture nuanced relationships between tokens, which is critical for tasks such as language understanding, translation, and other sequence-based applications.

3.Relationships among input and output tokens

In the Transformer architecture, the attention mechanisms are strategically organized to capture all possible relationships among input and output tokens in a sophisticated way. Here's how it works:

  1. Self-Attention: Input tokens are first processed through self-attention layers. Each token generates a query, key, and value vector. Self-attention calculates the compatibility between the query of one token and the key of every other token. The resulting attention weights are used to blend the value vectors of all tokens, forming a new representation for each token that encapsulates its global context within the input sequence.

  2. Multi-Head Attention: Instead of a single attention mechanism, multiple attention heads are employed, each focusing on different aspects of the input sequence. This multi-head approach allows the model to analyze and capture various relationships among tokens concurrently.

  3. Encoder-Decoder Attention: For sequence-to-sequence tasks like machine translation, the Transformer also uses an encoder-decoder structure with cross-attention. The decoder attends to the output of the encoder, allowing each output token to consider the entire input sequence as it's generated.

  4. Positional Encoding: Since the attention mechanism is not inherently sensitive to the order of tokens, positional encoding is added to the input embeddings to maintain the positional information.

In summary, the Transformer uses a combination of carefully configured self-attention, multi-head attention, and encoder-decoder attention to systematically and comprehensively capture the intricate relationships between input and output tokens. This design enables the model to effectively handle long-range dependencies and produce high-quality representations for downstream tasks.

  • 9
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值