构建大语言模型的四个主要阶段

        大规模语言模型的发展历程虽然只有短短不到五年的时间,但是发展速度相当惊人,国内外有超过百种大模型相继发布。中国人民大学赵鑫教授团队在文献按照时间线给出 2019 年至 2023 年比较有影响力并且模型参数量超过 100 亿的大规模语言模型。大规模语言模型的发展可以粗略的分为如下三个阶段:基础模型、能力探索、突破发展。

       大语言模型构建通常包含以下四个主要阶段:预训练、有监督微调、奖励建模和强化学习,简要介绍各阶段使用的算法、数据、难点以及实践经验。

  • 预训练
       需要利用包含数千亿甚至数万亿 单词的训练数据,并借助由数千块高性能 GPU 和高速网络组成的超级计算机,花费数十天完成深 度神经网络参数的训练。这一阶段的核心难点在于如何构建训练数据以及如何高效地进行分布式训练。

       预训练阶段是大规模语言模型训练的关键步骤之一,特别是对于GPT(Generative Pre-training Transformer)系列模型而言。在预训练阶段,模型通过自我监督学习(Self-supervised Learning)的方式,利用海量无标签的互联网文本数据集进行训练。具体来说,GPT模型采用了自回归语言模型的形式,其核心任务是根据给定的文本序列预测下一个可能出现的单词。

       模型通过Transformer架构的多层自注意力机制学习到文本序列中词汇之间的深层上下文依赖关系。在训练过程中,模型试图最小化预测下一个单词的交叉熵损失,从而逐步建立起对自然语言规律的深刻理解,其中包括词汇搭配、语法结构、短语和句子的意义等。

       通过预训练,模型能够在大规模无标注数据上习得通用的语言表示,这些表示可以被进一步应用于多种不同的自然语言处理任务中,只需要在预训练模型的基础上进行微调,就可以在特定任务上达到相当出色的性能。这极大地降低了对大量有标注数据的依赖,并为多种下游任务提供了强有力的模型基础。

  • 有监督微调阶段
       利用少量高质量的数据集,其中包含用户输入的提示词( Prompt )和对应的理想输出结果。提示词可以是问题、闲聊对话、任务指令等多种形式和任务。这个阶段是从语言模型向对话模型转变的关键,其核心难点在于如何构建训练数据,包括训练数据内部多个任务之 间的关系、训练数据与预训练之间的关系以及训练数据的规模。

       有监督微调是预训练模型适应特定任务的关键步骤。在完成了大规模无标注数据上的预训练后,模型已经学习到了丰富的语言结构和模式。然而,为了针对性地解决特定的自然语言处理任务(如问答系统、文本分类、机器翻译等),我们需要对预训练模型进行微调(Fine-tuning)。

       微调过程中,我们会使用特定任务的有标签数据集,重新训练模型的部分或全部权重,使其能够针对特定任务进行优化。这意味着模型会在原有的预训练基础上,针对新的任务目标调整其内部参数,以便更好地理解和处理任务特有的特征和规律。

       在微调阶段,模型的输入和输出会与特定任务一致。例如,在文本分类任务中,模型将学习如何根据输入文本预测相应的类别标签;而在问答系统任务中,模型则将学会根据提供的背景文本生成恰当的答案。

       通过这种方法,预训练模型能够快速适应新任务,通常比从零开始训练模型需要更少的数据和计算资源,同时也能够取得更好的性能表现。这种预训练-微调范式已经成为现代自然语言处理中广泛采用的技术手段。

  • 奖励建模阶段
       奖励建模阶段 的目标是构建一个文本质量对比模型,用于对于同一个提示词,对有监督微调模型给出的多个不同输出结果进行质量排序。这一阶段的核心难点在于如何限定奖励模型的应用范围以及如何构建训练数据。

       奖励建模(Reward Modeling)是一种强化学习中的技术,尽管像GPT这样的大规模预训练语言模型通常基于自监督学习或最大似然估计进行训练,但在某些情况下,奖励建模可以作为一种补充手段,帮助进一步优化模型的行为,特别是当涉及到道德、伦理或者更加符合人类价值判断的输出时。

       在奖励建模框架下,首先定义一个“奖励函数”,该函数量化了模型行为的好坏程度,即模型输出越符合预期的目标或人类偏好,则获得的奖励越高。然后,通过训练一个辅助模型(也称为奖励模型)来预测这些奖励信号,辅助模型通常是基于少量人工标注数据或者其他方式表达的人类偏好。

       在实际应用中,奖励建模可能被用来指导预训练语言模型的微调过程,使模型在生成文本时不仅追求语法和语义的正确性,还能尽量遵循预设的价值观或社会规范。这一过程可能包括让模型根据所学到的奖励信号调整其策略,生成更加符合期望的结果。通过这种方式,即使原始训练并未采用强化学习,奖励建模也可以间接引入强化学习的理念来改进模型的表现。

  • 强化学习阶段
       根据数十万提示词,利用前一阶段训练的奖励模型,对有监督微调模型对用户提示词补全结果
的质量进行评估,并与语言模型建模目标综合得到更好的效果。这一阶段的难点在于解决强化学
习方法稳定性不高、超参数众多以及模型收敛困难等问题。

       强化学习(Reinforcement Learning,RL)确实是一个强有力的机器学习框架,尤其适用于那些智能体需要通过与环境交互来学习最优行为的场景。在自然语言处理(NLP)领域,强化学习应用于对话模型的训练时,模型扮演的角色就是一个智能体,这个智能体会在对话交互的环境中采取行动(例如,生成回应),然后根据接收到的外部反馈(即奖励信号)来调整它的策略。

       在对话系统的上下文中,强化学习允许模型通过与用户或其他评价机制交互,根据用户的满意度、对话连贯性、信息准确性等因素获取即时或延迟的奖励。比如,如果模型生成的回答得到了用户的积极反馈或实现了预定的目标(如解答了问题或完成了任务),那么模型会得到正向奖励;反之,若回答不恰当或不符合预期,则可能得到负向奖励或没有奖励。

      一些高级应用场景中,强化学习与语言模型相结合的技术已经发展到了更为精细的层次,如使用人类反馈强化学习(Human Feedback Reinforcement Learning, RLHF),这种技术可以让语言模型更有效地吸收和理解人类偏好,并据此优化其生成的文本内容和风格。例如,OpenAI的ChatGPT就是通过RLHF技术进行了后期微调,以便更好地实现与人类的友好交互和遵循社会规范。

1. 预训练(Pre-training)

算法

  • 在预训练阶段,最常用的算法是基于Transformer架构的自注意力机制,如BERT、GPT系列、XLNet、RoBERTa等模型。这些模型通过无监督学习的方法,在大规模未标注文本数据上进行训练,学习语言的基本结构和模式。

数据

  • 使用数十亿乃至数百亿字节级别的大规模语料库,包括网页抓取数据、书籍、百科全书、论坛讨论等各类文本数据。

难点

  • 数据清洗和预处理:去除噪声数据,确保训练数据的质量和多样性。
  • 计算资源需求:训练超大规模模型需要极其庞大的计算资源,包括GPU集群或TPU阵列。
  • 学习效率和泛化能力:如何设计有效的预训练任务(如掩码语言模型、自回归语言模型等)以提高模型学习质量和泛化性能。

实践经验

  • BERT使用双向Transformer编码器结构,并引入了掩码语言模型(Masked Language Modeling, MLM)和下一句预测(Next Sentence Prediction, NSP)任务进行预训练。
  • GPT系列模型使用自回归Transformer解码器,通过预测下一个词语的方式进行预训练。

2. 有监督微调(Supervised Fine-tuning)

算法

  • 在预训练模型的基础上,针对特定的下游任务(如文本分类、问答、命名实体识别等),在带标签的小规模任务数据集上进行有监督微调。

数据

  • 微调阶段使用的数据集通常是有标注的任务特异性数据,如GLUE、SuperGLUE、SQuAD等任务数据集。

难点

  • 过拟合:由于预训练模型参数量庞大,如何在有限的标注数据上进行有效微调而不至于过拟合是一个挑战。
  • 微调策略:如何选择合适的微调层、冻结部分层、调整学习率等因素以优化微调效果。

实践经验

  • 微调时通常会对预训练模型的顶部层进行训练,同时调整模型整体的学习率,以充分利用预训练阶段学到的通用知识。

3. 奖励建模(Reinforcement Learning)

算法

  • 在某些情况下,模型的训练可以通过强化学习方式进行,模型根据所采取的动作(生成文本等)得到环境反馈(奖励或惩罚),进而调整策略。

数据

  • 不再依赖于明确的标签,而是根据模型生成的文本内容与预期目标的匹配程度或其他相关指标给予奖励信号。

难点

  • 设计合理的奖励函数:确保奖励信号能够正确反映生成文本的质量和目标任务的要求。
  • 稳定性与收敛性:强化学习过程可能较不稳定,需要精细调整训练策略以保证收敛到最优解。

实践经验

  • OpenAI的GPT-3在一些生成任务上采用了基于奖励的微调(RLHF,Reinforcement Learning with Human Feedback),通过人类评估员对模型生成结果的打分来调整模型策略。

4. 强化学习(Reinforcement Learning)

算法

  • 强化学习应用于语言模型时,通常涉及到自动生成任务,模型通过不断试错并根据外部环境的反馈(例如人类用户的评价或内置评估指标)调整自身行为。

数据

  • 可能是与环境交互产生的序列数据,或者是用户对模型生成结果的反馈数据。

难点

  • 采样效率:强化学习往往需要大量交互以学习最优策略,而在自然语言生成场景下,采样和反馈可能十分耗时和昂贵。
  • 环境模拟:如果不能直接与真实世界交互,可能需要构建模拟环境来优化模型。

实践经验

  • 一些研究尝试将强化学习用于对话系统,通过与模拟用户交互,使模型学会更加流畅和有意义的对话策略。在实践中,通常会结合有监督学习和强化学习,以最大化模型性能。

       总之,构建大语言模型是一个循序渐进的过程,从大规模预训练开始,逐步通过有监督微调、奖励建模和强化学习等手段,让模型适应更具体和复杂的任务需求。在这个过程中,如何优化算法、合理利用数据、克服难点以及总结最佳实践,都是推动模型性能持续提升的关键要素。

        根据 OpenAI 联合创始人 Andrej Karpathy 在微软 Build 2023 大会上所公开的信息,OpenAI 所使用的大规模语言模型构建流程主要包含四个阶段:预训练、有监督微调、奖励建模、强化学习。这四个阶段都需要不同规模数据集合、不同类型的算法,产出不同类型的模型,所需要的资源也有非常大的差别。

以下是每个阶段的详细描述:

  1. 预训练 (Pre-training):

    • 数据集: 预训练阶段通常使用大规模无标注文本数据集,例如Wikipedia、Common Crawl、BookCorpus等。这些数据集包含了海量未标记的自然语言文本,用于训练模型捕捉语言的基本规律和结构。
    • 算法: 常见的预训练算法包括自注意力机制为基础的Transformer架构下的BERT(Bidirectional Encoder Representations from Transformers)、GPT(Generative Pre-training Transformer)系列模型等。这些模型首先通过掩码语言模型(MLM)或自回归语言模型(ARLM)任务进行预训练,使模型学习通用的语言表示。
    • 模型: 输出的是一个通用的语言模型,如BERT、GPT-3等,它们能生成或预测缺失的词汇,形成对语言深层次理解的基础模型。
    • 资源: 预训练需要巨大的计算资源,包括GPU集群和大量的存储空间,训练时间也可能长达数周甚至数月。
  2. 有监督微调 (Supervised Fine-tuning):

    • 数据集: 微调阶段使用的是带有标签的小规模或者特定领域的数据集,如GLUE、SuperGLUE、SQuAD等基准测试任务的数据集,涵盖文本分类、问答、语义相似度等多种任务类型。
    • 算法: 在预训练模型的基础上,通过调整模型权重并对特定任务进行有监督训练,例如添加额外的分类层,然后针对具体任务目标优化模型参数。
    • 模型: 经过微调后的模型具有针对性,能够解决具体的下游任务,如情感分析模型、命名实体识别模型等。
    • 资源: 虽然相比预训练所需资源较少,但仍需要一定量的GPU资源来进行快速有效的训练,同时对于某些复杂任务可能需要较长的训练时间。
  3. 奖励建模 (Reward Modeling):

    • 数据集: 这个阶段的数据集是由人类评估员给出的评价或奖励信号构成,反映模型在某个任务上的表现好坏。
    • 算法: 奖励建模常用于强化学习框架中,通过模仿学习或RLHF(Reinforcement Learning from Human Feedback)等方法,将来自人类反馈的奖励信号转化为模型更新的信号。
    • 模型: 通过这种方式微调的模型能够在遵循人类价值观的前提下提高决策质量和输出质量,如ChatGPT中的安全性和有用性就通过奖励建模得以增强。
    • 资源: 同样需要GPU资源进行训练,另外还需要人力投入收集和整理高质量的人类反馈数据。
  4. 强化学习 (Reinforcement Learning):

    • 数据集: 强化学习环境可以是模拟环境产生的数据,也可以是实际操作过程中的实时反馈数据,模型通过与环境互动获得经验样本。
    • 算法: Q-learning、Policy Gradient、Actor-Critic等算法被用来训练模型如何在给定环境中采取最优行动以最大化累积奖励。
    • 模型: 强化学习训练出的模型可以直接应用于游戏、机器人导航、对话系统等场景,模型具备动态适应环境变化的能力。
    • 资源: 强化学习训练过程中往往需要大量的尝试和探索,因此需要大量计算资源,尤其是对于复杂环境和高维动作空间的任务。此外,构建模拟环境或获取真实世界的即时反馈也是一项重要资源投入。
  • 27
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
阐述大型数据库系统安全风险及策略 1 数据库及其安全问题概述 数据库是存储在一起的相关结构化数据的集合,这些相关数据是无损害和不赘余的。它产生于距今50年前,随着信息技术和市场的发展,特别是20世纪90年代以后,已经服务于多种领域,包括国防、教育、商贸等;并且成为企业、部门及个人日常工作、生产和生活必不可少的一部分。当某个系统中存在结构上完全分开的若干个数据库时,则该系统包含一个"数据库集合"。 数据库系统作为信息的聚集体,其数据安全相关问题成为人们高度关注的重点。总体来说,数据库系统安全问题主要包括数据库数据的安全和数据库系统的安全两个部分。前者指的是在数据库系统瘫痪、存储媒体损坏及用户操作失误的情况下,数据信息仍存在而无丢失的安全现象;后者指的是严格预防和控制非法用户侵入数据库,避免产生系统漏洞的安全现象。其中数据库系统的安全问题是"重中之重"。日常使用和操作中,必须合理设置口令、密码,严格核实用户身份,杜绝非法用户侵入系统而造成数据泄露或损坏。 2 数据库发展及安全体系构建 随着信息管理内容的不断扩展,数据管理不止仅限于存储和管理数据信息,而逐渐向着提供用户所需要的各种数据管理方式的方向变化。出现了丰富多样的数据模型经历了从最简单的表格存储到海量数据库系统发展过程,出现了许多大型的数据库,适用性逐渐增强。经过长期研究,我们借助数据库管理系统的选择依据,比较、分析了四种常用数据库系统的功能特点:(1)ORACLE:开发工具丰富,覆盖全面;使用第四代语言开发的工具和图文界面;具有数据保护和分布优化查询功能;数据、网络透明,支撑B/S体系和混合的体系组成结构;实现了两阶段提交、多线索查询手段。(2)SYBASE 10:完全的客户机/服务器体系结构,能为数百用户提供高性能需求;采用单进程多线索技术进行查询,节省系统开销,提高内存的利用率;支持存储过程,改善网络环境的运行效率,增加数据库的服务容量;提供日志与数据库的镜象,提高数据库容错能力;支持计算机蔟族(CLUSTER)环境下的快速故障切换。(3)INGRES:开放的客户机/服务器体系结构,允许用户建立多个多线索服务器;减小CPU负载,减小网络开销;智能优化功能;数据的在线备份;减少I/O量;具有数据库规则系统,确保数据库的一致性;资源控制与查询优化相结合。(4)INFORMIX:双引擎和多线索查询机制;具有三个任务队列和虚拟处理器;提供并行索引功能;具有对复杂系统应用开发工具。(5)DB2:支持异种网络连接。与此同时,随着计算机网络水平的不断提高,数据库攻击者的手段也更加先进,这就要求必须采取严格、有效的措施来防范数据库安全风险,避免给企业或者用户造成损失。为实现这种目的,下面对构建的数据库安全防御体系进行了相关分析。 2.1 体系特征 综合分析,该体系数据信息具有如下特征: 2.1.1 独立性,保持不同数据逻辑结构之间的相互独立。利于数据有序管理,避免混乱、交叉造成安全风险。 2.1.2 安全性,对数据信息进行加密处理,严格核实身份,避免安全风险。 2.1.3 完整性,要求保证数据信息在安全状态下的同时,确保内容、排序和程序的完好。 2.1.4 可调性,用户结合数据库运行状态进行适当调整和控制,以保证数据库的安全性能要求。 2.2 查杀病毒 通常来讲,该安全体系的病毒查杀过程包含以下四方面内容: 2.2.1 检查软件。利用恶意软件扫描器或其他常用杀毒软件,扫描、查杀数据库服务器及网络系统,并定期综合查杀数据库。 2.2.2 检查内存。计 机在长期运行过程中难免出现许多安全隐患,若内存存储空间严重不足,将严重阻碍数据库操控系统。因此,需要选择适当的方式查杀恶意软件并及时清除恶意程序,提高网络运行环境。 2.2.3 检查端口。数据库端口具有开发性特征,导致入侵者易盗取数据信息。因此需要选择合理工具核查开放端口实况,保证资源共享,同时满足安全要求。 2.2.4 检查流量。用户采用自身携带的分析工具检查流量状况,作为辅助,配合其他检查内容防御数据库系统安全风险。 此外,新的计算机技术也不断涌现,出现了诸如数据流、Web数据管理、数据挖掘技术等一系列前沿技术。其中计算机挖掘技术的安全应用功能可体现为:(1)联系功能。对数据进行关联分析,保证所得结果的安全可靠性。(2)聚类功能。对数据资源的性质、内容、体系进行调整、分配及归类,了解如何设计数据库。(3)预测功能。对现有的大量数据资源进行详细、合理分析,在确保切合实际的前提下,达到预测效果。(4)检测功能。对挖掘结果进行检查,保证安全体系的完整性,并及时发现漏洞。 3 数据库系统安全风险和策略、措施 3.1 风险分析 近年来随着计算机网络的普及,网络数据库系统遭受攻击的现象越来越频繁,以上文字中,我们不难看出数据库系统在实际应用中存在
写在前面的话 引言 1. 前提 2. Java的学习 3. 目标 4. 联机文档 5. 章节 6. 练习 7. 多媒体 8. 源代码 9. 编码样式 10. Java版本 11. 课程和培训 12. 错误 13. 封面设计 14. 致谢 第1章 对象入门 1.1 抽象的进步 1.2 对象的接口 1.3 实现方案的隐藏 1.4 方案的重复使用 1.5 继承:重新使用接口 1.5.1 改善基础类 1.5.2 等价和类似关系 1.6 多形对象的互换使用 1.6.1 动态绑定 1.6.2 抽象的基础类和接口 1.7 对象的创建和存在时间 1.7.1 集合与继承器 1.7.2 单根结构 1.7.3 集合库与方便使用集合 1.7.4 清除时的困境:由谁负责清除? 1.8 违例控制:解决错误 1.9 多线程 1.10 永久性 1.11 Java和因特网 1.11.1 什么是Web? 1.11.2 客户端编程 1.11.3 服务器端编程 1.11.4 一个独立的领域:应用程序 1.12 分析和设计 1.12.1 不要迷失 1.12.2 阶段0:拟出一个计划 1.12.3 阶段1:要制作什么? 1.12.4 阶段2:开始构建? 1.12.5 阶段3:正式创建 1.12.6 阶段4:校订 1.12.7 计划的回报 1.13 Java还是C++? 第2章 一切都是对象 2.1 用句柄操纵对象 2.2 必须创建所有对象 2.2.1 保存在什么地方 2.2.2 特殊情况:主类型 2.2.3 Java中的数组 2.3 绝对不要清除对象 2.3.1 作用域 2.3.2 对象的作用域 2.4 新建数据类型:类 2.4.1 字段和方法 2.5 方法、自变量和返回值 2.5.1 自变量列表 2.6 构建Java程序 2.6.1 名字的可见性 2.6.2 使用其他组件 2.6.3 static关键字 2.7 我们的第一个Java程序 2.8 注释和嵌入文档 2.8.1 注释文档 2.8.2 具体语法 2.8.3 嵌入 2.8.4 @see:引用其他类 2.8.5 类文档标记 2.8.6 变量文档标记 2.8.7 方法文档标记 2.8.8 文档示例 2.9 编码样式 2.10 总结 2.11 练习 第3章 控制程序流程 3.1 使用Java运算符 3.1.1 优先级 3.1.2 赋值 3.1.3 算术运算符 3.1.4 自动递增和递减 3.1.5 关系运算符 3.1.6 逻辑运算符 3.1.7 按位运算符 3.1.8 移位运算符 3.1.9 三元if-else运算符 3.1.10 逗号运算符 3.1.11 字串运算符 3.1.12 运算符常规操作规则 3.1.13 造型运算符 3.1.14 Java没有“sizeof” 3.1.15 复习计算顺序 3.1.16 运算符总结 3.2 执行控制 3.2.1 真和假 3.2.3 反复 3.2.6 中断和继续 3.2.7 切换 3.3 总结 3.4 练习 第4章 初始化和清除 4.1 由构建器保证初始化 4.2 方法过载 4.2.1 区分过载方法 4.2.2 主类型的过载 4.2.3 返回值过载 4.2.4 默认构建器 4.2.5 this关键字 4.3 清除:收尾和垃圾收集 4.3.1 finalize()用途何在 4.3.2 必须执行清除 4.4 成员初始化 4.4.1 规定初始化 4.4.2 构建器初始化 4.5 数组初始化 4.5.1 多维数组 4.6 总结 4.7 练习 第5章 隐藏实施过程 5.1 包:库单元 5.1.1 创建独一无二的包名 5.1.2 自定义工具库 5.1.3 利用导入改变行为 5.1.4 包的停用 5.2 Java访问指示符 5.2.1 “友好的” 5.2.2 public:接口访问 5.2.3 private:不能接触 5.2.4 protected:“友好的一种” 5.3 接口与实现 5.4 类访问 5.5 总结 5.6 练习 第6章 类再生 6.1 合成的语法 6.2 继承的语法 6.2.1 初始化基础类 6.3 合成与继承的结合 6.3.1 确保正确的清除 6.3.2 名字的隐藏 6.4 到底选择合成还是继承 6.6 递增开发 6.7 上溯造型 6.7.1 何谓“上溯造型”? 6.8 final关键字 6.8.1 final数据 6.8.2 final方法 6.8.3 final类 6.8.4 final的注意事项 6.9 初始化和类装载 6.9.1 继承初始化 6.10 总结 6.11 练习 第7章 多形性 7.1 上溯造型 7.1.1 为什么要上溯造型 7.2 深入理解 7.2.1 方法调用的绑定 7.2.2 产生正确的行为 7.2.3 扩展性 7.3 覆盖与过载 7.4 抽象类和

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值