本文主要使用Unsloth基于Qwen2基础模型微调对话机器人以及在Ollama上运行。
在魔搭社区免费算力上,仅需要10G显存,使用Unsloth来微调Qwen2创建自定义聊天机器人,并创建GGUF文件,可以在PC端本地运行。
参考链接:https://docs.unsloth.ai/
1 Unsloth是什么?
Unsloth是一个预训练模型微调框架,专注于提高训练速度和减少显存占用。针对现在主流模型,如Llama-3,Qwen2,Mistral等LLM的微调速度可提升2倍,内存使用量减少70%,而且准确度并不会降低!
-
所有内核均用OpenAI 的 Triton语言编写
-
准确度损失为 0%
-
通过bitsandbytes支持 4 位和 16 位 QLoRA / LoRA 微调。
-
开源训练速度提高 5 倍
-
拥有一张很酷的贴纸!所有基于Unsloth的模型都可以用这张贴纸
在本教程中,使用魔搭社区的免费GPU,使用10G显存微调Qwen2-7B
2 Ollama是什么?
Ollama 是一款极其简单的基于命令行的工具,用于运行 LLM,极易上手,可用于构建 AI 应用程序。本文使用Ollama作为我们的推理引擎。
3 环境安装
选择魔搭社区镜像版本:
安装Unsloth:
!pip install "unsloth[cu121-torch230] @ git+https://github.com/unslothai/unsloth.git"
4 选择需要微调的模型
本文选择Qwen2-7B,Qwen2 是 Qwen 大型语言模型的新系列。与最先进的开源语言模型(包括之前发布的 Qwen1.5)相比,Qwen2 总体上超越了大多数开源模型,并在一系列针对语言理解、语言生成、多语言能力、编码、数学、推理等的基准测试中展现出与专有模型的竞争力。
from unsloth import FastLanguageModel``import torch``from modelscope import snapshot_download``max_seq_length = 2048` `dtype = torch.bfloat16``load_in_4bit = True` ` `` ``model_dir=snapshot_download("qwen/Qwen2-7B")``model, tokenizer = FastLanguageModel.from_pretrained(` `model_name = model_dir,`` max_seq_length = max_seq_length,` `dtype = dtype,` `load_in_4bit = load_in_4bit,``)
其中三个参数的设置:
max_seq_length = 2048
这决定了模型的上下文窗口长度,比如Qwen2-7B的上下文长度为32K,并可以通过yarn拓展到128K。本文从测试的角度,设置上下文长度为2048。
dtype = torch.bfloat16
根据A10的GPU选择torch.bfloat16
load_in_4bit = True
本文采用 4 位量化进行微调。这样可将内存使用量减少 4 倍。4 位量化本质上将权重转换为一组有限的数字以减少内存使用量。这样做的缺点是准确度会下降 1-2%。
5 微调参数
model = FastLanguageModel.get_peft_model(` `model,` `r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128` `target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",` `"gate_proj", "up_proj", "down_proj",],` `lora_alpha = 16,` `lora_dropout = 0, # Supports any, but = 0 is optimized` `bias = "none", # Supports any, but = "none" is optimized` `# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!` `use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context` `random_state = 3407,` `use_rslora = False, # We support rank stabilized LoRA` `loftq_config = None, # And LoftQ``)
微调参数的设置目标是改变这些微调参数以提高微调的准确性,同时也不希望发生过拟合。过度拟合是指让语言模型记住数据集,而无法回答新颖的新问题。本文希望最终模型能够回答从未见过的问题,而不是进行记忆。
r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
微调过程的rank。数值越大,占用的内存越多,速度越慢,但可以提高复杂任务的准确性。通常建议数值为 8(用于快速微调),最高可达 128。数值过大可能会导致过度拟合,从而损害模型的质量。
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",` `"gate_proj", "up_proj", "down_proj",],
本文选择所有模块进行微调。您可以删除一些模块以减少内存使用量并加快训练速度,但强烈不建议这样做。
lora_alpha = 16,
微调的缩放因子。较大的数字将使微调更多地了解您的数据集,但可能会导致过度拟合。建议将其等于等级r
,或将其加倍。
lora_dropout = 0, # Supports any, but = 0 is optimized
将其保留为 0 以加快训练速度!可以减少过度拟合,但效果不大。
bias = "none", # Supports any, but = "none" is optimized
将其保留为 none,以实现更快、更少的过度拟合训练!
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
选项包括True
、False
和"unsloth"
。本文建议这样做"unsloth"
,因为unsloth将内存使用量减少了 30%,并支持极长的上下文微调。
random_state = 3407,
确定确定性运行的次数。训练和微调需要随机数,因此设置此数字可使实验可重复。
use_rslora = False, # We support rank stabilized LoRA
高级功能可自动设置lora_alpha = 16
。
loftq_config = None, # And LoftQ
高级功能可将 LoRA 矩阵初始化为权重的前 r 个奇异向量。可以在一定程度上提高准确度,但一开始会使内存使用量激增。
6 Prompt模板和数据集
现在使用 Qwen-2 的chatml格式进行对话风格微调。数据集使用 ShareGPT 风格的 Open Assistant 对话数据集。
数据集链接:
https://modelscope.cn/datasets/OmniData/guanaco-sharegpt-style
使用 get_chat_template 函数来获取正确的聊天模板。get_chat_template 函数目前支持 zephyr、chatml、mistral、llama、alpaca、vicuna、vicuna_old 等模板。
注意 ShareGPT 使用 {“from”: “human”, “value” : “Hi”} 而不是 {“role”: “user”, “content” : “Hi”},因此使用mapping做一轮映射。
from unsloth.chat_templates import get_chat_template`` ``tokenizer = get_chat_template(` `tokenizer,` `chat_template = "chatml", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth` `mapping = {"role" : "from", "content" : "value", "user" : "human", "assistant" : "gpt"}, # ShareGPT style``)`` ``def formatting_prompts_func(examples):` `convos = examples["conversations"]` `texts = [tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = False) for convo in convos]` `return { "text" : texts, }``pass`` ``from modelscope.msdatasets import MsDataset``dataset = MsDataset.load('OmniData/guanaco-sharegpt-style', split = "train")``dataset = dataset.map(formatting_prompts_func, batched = True,)
可以看到mapping前后的数据集的具体样式:
7 训练模型
下面开始训练模型,使用huggingface的trl库
from trl import SFTTrainer``from transformers import TrainingArguments``from unsloth import is_bfloat16_supported`` ``trainer = SFTTrainer(` `model = model,` `tokenizer = tokenizer,` `train_dataset = dataset,` `dataset_text_field = "text",` `max_seq_length = max_seq_length,` `dataset_num_proc = 2,` `packing = False, # Can make training 5x faster for short sequences.` `args = TrainingArguments(` `per_device_train_batch_size = 2,` `gradient_accumulation_steps = 4,` `warmup_steps = 5,` `max_steps = 60,` `learning_rate = 2e-4,` `fp16 = not is_bfloat16_supported(),` `bf16 = is_bfloat16_supported(),` `logging_steps = 1,` `optim = "adamw_8bit",` `weight_decay = 0.01,` `lr_scheduler_type = "linear",` `seed = 3407,` `output_dir = "outputs",` `),``)
通常不建议更改上述参数,但需要详细说明其中一些参数:
per_device_train_batch_size = 2,
如果想更多地利用 GPU 的内存,请增加批处理大小。同时增加批处理大小可以使训练更加流畅,并使过程不会过度拟合。
gradient_accumulation_steps = 4,
相当于将批量大小增加到自身之上,但不会影响内存消耗!如果您想要更平滑的训练损失曲线,通常建议增加这个值。
max_steps = 60, # num_train_epochs = 1,
我们将步骤设置为 60 以加快训练速度。对于可能需要数小时的完整训练运行,请注释掉max_steps
,并将其替换为num_train_epochs = 1
。将其设置为 1 表示对数据集进行 1 次完整传递。通常建议传递 1 到 3 次,不要更多,否则您的微调会过度拟合。
learning_rate = 2e-4,
如果您想让微调过程变慢,但同时又最有可能收敛到更高精度的结果,请降低学习率。我们通常建议尝试 2e-4、1e-4、5e-5、2e-5 作为数字。
trainer_stats = trainer.train()
显存占用(使用Unsloth):
8. 推理/运行模型
完成训练过程后运行模型!
from unsloth.chat_templates import get_chat_template`` ``tokenizer = get_chat_template(` `tokenizer,` `chat_template = "chatml", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth` `mapping = {"role" : "from", "content" : "value", "user" : "human", "assistant" : "gpt"}, # ShareGPT style``)`` ``FastLanguageModel.for_inference(model) # Enable native 2x faster inference`` ``messages = [` `{"from": "human", "value": "杭州的省会在哪里?"},``]``inputs = tokenizer.apply_chat_template(` `messages,` `tokenize = True,` `add_generation_prompt = True, # Must add for generation` `return_tensors = "pt",``).to("cuda")`` ``outputs = model.generate(input_ids = inputs, max_new_tokens = 64, use_cache = True)``tokenizer.batch_decode(outputs)
也支持流式输出:
FastLanguageModel.for_inference(model) # Enable native 2x faster inference`` ``messages = [` `{"from": "human", "value": "杭州的省会在哪里?"},``]``inputs = tokenizer.apply_chat_template(` `messages,` `tokenize = True,` `add_generation_prompt = True, # Must add for generation` `return_tensors = "pt",``).to("cuda")`` ``from transformers import TextStreamer``text_streamer = TextStreamer(tokenizer, skip_prompt = True)``_ = model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 128, use_cache = True)
9.保存模型
我们将微调后的模型保存到一个名叫LoRA的100MB小文件。
model.save_pretrained("lora_model") # Local saving``tokenizer.save_pretrained("lora_model")
10.导出至Ollama
最后,可以将经过微调的模型导出为GGUF格式!本文选择的量化方法是q4_k_m格式。可以前往https://github.com/ggerganov/llama.cpp了解有关 GGUF 的更多信息。
if True: model.save_pretrained_gguf("model", tokenizer, quantization_method = "q4_k_m")
11.自动创建Modelfile
Unsloth 在转化模型为GGUF格式的时候,自动生成Ollama所需的Modelfile
文件,其中包括模型的路径和我们用于微调过程的聊天模板!可以打印Modelfile
生成的模板,如下所示:
print(tokenizer._ollama_modelfile)
12.使用Ollama创建和推理模型
Linux环境使用
Liunx用户可使用魔搭镜像环境安装【推荐】
git clone https://www.modelscope.cn/modelscope/ollama-linux.git``cd ollama-linux``sudo chmod 777 ./ollama-modelscope-install.sh``./ollama-modelscope-install.sh
启动Ollama服务
ollama serve
创建自定义模型
使用ollama create命令创建自定义模型
!ollama create unsloth_qwen2 -f /mnt/workspace/model/Modelfile

多轮对话测试
在terminal中运行gguf模型
ollama run unsloth_qwen2
测试模型多轮对话效果:
至此,您已经成功使用Unsloth微调了Qwen2基础模型,使之具备多轮对话能力,并导出Ollama支持本地运行,显存使用10G以内。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。