目录引言:编码 AI 是新素养。
第1章:职业成长的三个步骤。
第2章:学习技术技能,成就有前途的人工智能职业。
第3章:为了在人工智能领域找到工作你应该学习数学吗?
第4章:界定成功的人工智能项目。
第5章:寻找符合你职业目标的项目。
第6章:构建显示技能进步的项目组合。
第7章:启动你的人工智能职位搜索的简单框架。
第8章:使用信息面试找到合适的工作。
第9章:找到适合你的人工智能工作。
第10章:构建人工智能职业生涯的关键。
第11章:克服冒名顶替综合症。
最后的想法:让每一天都过得有意义。
引言:人工智能编码是新的素养
今天,我们理所当然地认为许多人都知道如何阅读和写作。我希望有一天,人们知道如何编写代码,特别是人工智能代码,也会同样普遍。
几个世纪前,社会并不认为语言素养是一项必要的技能。很少有人学会阅读和写作,其他人则让他们读写。识字花了数个世纪才得以普及,现在社会因此变得更加丰富。
语言使人与人之间的深度交流成为可能。代码是人与机器之间最深层次的交流形式。随着机器在日常生活中变得越来越重要,这种交流变得越来越重要。
传统的软件工程——编写程序明确告诉计算机要执行的步骤序列——一直是编程素养的主要途径。许多入门编程课程都以创建视频游戏或构建网站为例。但人工智能、机器学习和数据科学提供了一种新的范式,计算机可以从数据中提取知识。这项技术为编程提供了更好的途径。
很多个星期天,我都会从附近的披萨店买一块披萨。柜台后面的那位先生几乎没有理由学习如何制作视频游戏或编写自己的网站软件(除了个人成长和获得新技能的乐趣之外)。但人工智能和数据科学甚至对披萨制造商来说也具有巨大的价值。线性回归模型可能使他能够更好地估计需求,从而优化餐厅的人员配置和供应链。他可以更好地预测夏威夷披萨(我最喜欢的披萨)的销量!这样他就可以提前制作更多的夏威夷派,减少顾客等待的时间。
几乎在任何产生数据的情况下都可以找到人工智能和数据科学的用途。因此,各种各样的职业都会发现定制人工智能应用程序和数据得出的见解比传统软件工程更有用。这使得面向人工智能的编码素养比传统编码更有价值。它可以使无数人能够利用数据来让他们的生活更加丰富。
我希望开发基础人工智能应用的前景,甚至比开发基础传统软件的前景更能鼓励更多人学习编程。如果社会接受这种新的读写能力,那么我们都会受益。
第1章:职业成长的三个步骤
人工智能的快速崛起带动了人工智能工作岗位的快速增加,许多人都在这个领域开创了令人兴奋的职业生涯。职业生涯是一段长达数十年的旅程,这条路并不平坦。多年来,我有幸看到成千上万的学生以及大大小小公司的工程师们踏上人工智能职业生涯。这是一个规划你自己课程的框架。
在此过程中,你将继续学习和工作。以工作搜索为重点的章节。
职业发展的三个关键步骤是学习基础技能、参与项目(深化技能、建立作品集并产生影响)和找工作。这些步骤相互叠加:
• 起初,你要专注于学习基础技能。涵盖有关学习基础技术技能的章节。• 在获得基础技术后,专注于找工作。
• 多年以来,我有幸看到成千上万的学生以及大大小小公司的工程师们踏上人工智能职业生涯。稍后您将努力找工作。
这些阶段适用于广泛的职业,但人工智能涉及独特的元素。例如:
• 人工智能尚处于萌芽阶段,许多技术仍在不断演变。虽然机器学习和深度学习的基础日趋成熟(课程是掌握这些基础的有效方法),但除了这些基础之外,在人工智能领域,与更成熟的领域相比,跟上不断变化的技术更为重要。
• 开展项目通常意味着与缺乏人工智能专业知识的利益相关者合作:这使得寻找合适的项目、估算项目的时间表和投资回报以及设定预期变得非常困难。此外,人工智能项目的高度迭代性也给项目管理带来了特殊挑战:如果你事先不知道需要多长时间才能达到目标准确度,你如何制定系统构建计划?即使系统已经达到目标,可能仍需要进一步迭代来解决部署后的偏差问题。
• 对人工智能技能和工作角色的看法不一致:虽然在人工智能领域寻找工作与在其他领域寻找工作类似,但也存在重要差异。许多公司仍在试图弄清楚他们需要哪些人工智能技能,以及如何雇用拥有这些技能的人。你从事的工作可能与面试官看到的有很大不同,你更有可能需要向潜在雇主介绍你工作的某些方面。
在你经历每一步时,你也应该建立一个支持你的社区。拥有可以帮助你的朋友和盟友,以及你努力帮助他们的人,会让这条路更容易走。无论你是刚刚开始,还是已经踏上征程多年,都是如此。
第2章:学习技术技能,成就有前途的人工智能职业
在上一章中,我介绍了在人工智能领域建立职业生涯的三个关键步骤:学习基础技术技能、参与项目和寻找工作,所有这些都需要加入社区的支持。在本章中,我想更深入地探讨第一步:学习基础技能。
关于人工智能的研究论文发表数量比一个人一生中能读到的还要多。因此,在学习时,优先选择主题至关重要。我认为,对于机器学习技术职业来说,最重要的主题是:
• 基础机器学习技能:例如,了解线性回归、逻辑回归、神经网络、决策树、聚类和异常检测等模型非常重要。除了特定模型之外,了解机器学习工作原理背后的核心概念也更为重要,例如偏差/方差、成本函数、正则化、优化算法和误差分析。
• 深度学习:深度学习已成为机器学习的重要组成部分,如果不了解它,很难在该领域脱颖而出!了解神经网络的基础知识、使其工作的实用技能(例如超参数调整)、卷积网络、序列模型和变压器很有价值。
• 与机器学习相关的数学:关键领域包括线性代数(向量、矩阵及其各种运算)以及概率和统计(包括离散概率和连续概率、标准概率分布、基本规则如独立性和贝叶斯规则以及假设检验)。此外,探索性数据分析(EDA)(使用可视化和其他方法系统地探索数据集)是一项被低估的技能。我发现EDA在以数据为中心的AI开发中特别有用,分析错误和获得见解确实有助于推动进步!最后,对微积分的基本直观理解也会有所帮助。做好机器学习所需的数学一直在发生变化。例如,尽管某些任务需要微积分,但改进的自动微分软件使得无需进行任何微积分就可以发明和实现新的神经网络架构。这在十年前几乎是不可能的。
• 软件开发:虽然仅凭机器学习建模技能就可以找到工作并做出巨大贡献,但如果你还能编写出色的软件来实现复杂的AI系统,你的就业机会就会增加。这些技能包括编程基础、数据结构(尤其是与机器学习相关的数据结构,例如数据框架)、算法(包括与数据库和数据处理相关的算法)、软件设计、熟悉Python以及熟悉TensorFlow或PyTorch和scikit-learn等关键库。
这是很多要学习的内容!即使您掌握了此列表中的所有内容,我希望您仍能继续学习并继续深化您的技术知识。我认识许多机器学习工程师,他们受益于自然语言处理或计算机视觉等应用领域或概率图形模型或构建可扩展软件系统等技术领域的更深层次技能。
如何获得这些技能?互联网上有很多好的内容,理论上,阅读几十个网页就可以了。但是,当目标是深入理解时,阅读脱节的网页效率低下,因为它们往往重复彼此,使用不一致的术语(这会减慢你的速度),质量参差不齐,并且会留下空白。这就是为什么一门好的课程——其中的材料被组织成连贯而合乎逻辑的形式——通常是掌握有意义的知识体系最省时的方法。当你吸收了课程中的知识后,你可以转向研究论文和其他资源。
最后,没有人可以在一个周末甚至一个月内把他们需要知道的一切记下来。我认识的每一位擅长机器学习的人都是终身学习者。考虑到我们这个领域变化如此之快,如果你想跟上潮流,除了不断学习别无选择。
如何才能多年保持稳定的学习速度?如果你能养成每周学习一点点的习惯,你就能以较少的努力取得显著的进步。
第3章:为了在人工智能领域找到工作你应该学习数学吗?
数学是人工智能的基础技能吗?了解更多数学总是好的!但要学的东西太多了,所以现实中,有必要分清轻重缓急。以下是你可以如何加强数学知识。
为了弄清楚什么是重要的,我发现问问自己需要知道什么才能做出想做的工作所需的决定很有用。在DeepLearning.AI,我们经常问:“一个人需要知道什么才能实现他们的目标?”目标可能是构建机器学习模型、构建系统或通过求职面试。
了解所用算法背后的数学原理通常很有用,因为它能让你调试算法。但有用的知识深度会随着时间而变化。随着机器学习技术日趋成熟,变得更加可靠和便捷,它们需要的调试会越来越少,对相关数学原理的较浅理解可能就足以让它们发挥作用。
例如,在机器学习的早期,用于求解线性方程组(用于线性回归)的线性代数库还不成熟。我必须了解这些库的工作原理,这样我才能在不同的库中进行选择,并避免数值舍入陷阱。但随着数值线性代数库的成熟,这一点变得不那么重要了。
深度学习仍然是一项新兴技术,因此当你训练神经网络并且优化算法难以收敛时,了解梯度下降、动量和Adam优化算法背后的数学原理将帮助你做出更好的决策。同样地,如果你的神经网络做了一些奇怪的事情——比如,它对某种分辨率的图像做出了错误的预测,但在其他分辨率下却没有——理解神经网络架构背后的数学原理可以让你更好地弄清楚该做什么。
当然,我也鼓励好奇心驱动的学习。如果你对某件事感兴趣,那就去学习吧,不管它有多有用!也许这会激发你的创造力或技术突破。
第4章:界定成功的人工智能项目
人工智能架构师最重要的技能之一是能够识别值得努力的想法。接下来的几章将讨论如何寻找和开展项目,以便您可以积累经验并建立自己的作品集。
多年来,我一直乐于将机器学习应用于制造业、医疗保健、气候变化、农业、电子商务、广告等行业。如果一个人不是这些领域的专家,他该如何找到其中有意义的项目呢?以下五个步骤可帮助您确定项目范围。
1.确定业务问题(而非AI问题)。我喜欢找一位领域专家,然后问:“你最希望改善的三件事是什么?为什么它们还没有发挥作用?”例如,如果你想将人工智能应用于气候变化,你可能会发现电网运营商无法准确预测风能和太阳能等间歇性能源未来能够产生多少电力。
2.集思广益,提出AI解决方案。我年轻的时候,常常会执行自己第一个兴奋的想法。有时这种方法还不错,但有时我最终会错过一个更好的想法,而这个想法可能不需要花费更多精力去实现。一旦你理解了问题,你就可以更有效地集思广益,提出潜在的解决方案。例如,为了预测间歇性能源的发电量,我们可以考虑使用卫星图像更准确地绘制风力涡轮机的位置,使用卫星图像估计风力涡轮机的高度和发电能力,或者使用天气数据更好地预测云量,从而预测太阳辐射。有时没有好的人工智能解决方案,这也没关系。
3.评估潜在解决方案的可行性和价值。你可以通过查看已发表的成果、竞争对手的成果或快速构建概念验证实现来确定某种方法在技术上是否可行。你可以通过咨询领域专家(例如,电网运营商,他们可以就上述潜在解决方案的实用性提供建议)来确定其价值。
4.确定里程碑。一旦你认为一个项目足够有价值,下一步就是确定要达到的指标。这包括机器学习指标(如准确性)和业务指标(如收入)。机器学习团队通常对学习算法可以优化的指标最为满意。但我们可能需要突破自己的舒适区,提出业务指标,例如与用户参与度、收入等相关的指标。不幸的是,并非每个业务问题都可以归结为优化测试集准确性!如果您无法确定合理的里程碑,则可能表明你需要进一步了解该问题。快速的概念验证可以帮助提供缺失的观点。
5.资源预算。仔细考虑完成项目所需的一切,包括数据、人员、时间以及您可能需要其他团队的任何集成或支持。例如,如果您需要资金购买卫星图像,请确保预算中有足够的资金。
开展项目是一个反复的过程。如果在任何一步,你发现当前的方向不可行,请返回到较早的步骤并继续你的新理解。是否有一个让你兴奋的领域,人工智能可能会带来改变?我希望这些步骤可以指导你通过项目工作探索它——即使你还没有该领域的深厚专业知识。人工智能不会解决所有问题,但作为一个社区,让我们寻找尽可能产生积极影响的方法。
第5章:寻找符合你职业目标的项目
不言而喻,我们应该只从事负责任、合乎道德、对人类有益的项目。但这些限制让我们的选择范围变得非常广泛。在上一章中,我写了如何识别和确定AI项目的范围。本章和下一章的重点略有不同:选择和执行项目时着眼于职业发展。
一个成功的职业生涯将包括许多项目,随着时间的推移,项目的范围、复杂性和影响力有望不断增长。因此,从小项目开始是可以的。利用早期项目来学习,随着技能的增长,逐渐升级到更大的项目。
当你刚开始创业时,不要指望别人会轻易地为你提供绝佳的想法或资源。许多人都是在业余时间做一些小项目。有了最初的成功(即使是小项目),你的技能就会不断提高,从而能够想出更好的点子,也更容易说服别人帮助你接手更大的项目。
• 加入现有项目。如果你发现其他人有想法,可以要求加入他们的项目。
• 坚持阅读和与人交流。每当我花大量时间阅读、参加课程或与领域专家交谈时,我就会想出新的想法。我相信你也会这样。
• 专注于应用领域。许多研究人员正在尝试推进基础人工智能技术——例如,通过发明下一代变压器或进一步扩展语言模型——因此,虽然这是一个令人兴奋的方向,但也非常困难。但是,机器学习尚未应用的应用种类繁多!我很幸运能够将神经网络应用于从自动直升机飞行到在线广告等各个领域,部分原因是我加入的时候,从事这些应用的人相对较少。如果您的公司或学校关心某个特定应用,请探索机器学习的可能性。这可以让您首次看到一个潜在的创造性应用——您可以在其中完成独特的工作——这是其他人尚未做过的。
如果你没有任何项目想法该怎么办?以下是生成它们的几种方法:
• 发展副业。即使你有一份全职工作,一个有趣的项目(可能发展成更大的项目,也可能不发展成更大的项目)也能激发你的创造力,加强与合作者的联系。当我还是一名全职教授时,从事在线教育并不是我的“工作”(我的工作是做研究和上课)。这是一个有趣的爱好,我经常出于对教育的热情而从事这项活动。我早期在家录制视频的经历帮助我后来以更实质性的方式从事在线教育工作。硅谷充满了以副业项目开始的创业故事。只要它不会与你的雇主产生冲突,这些项目可以成为迈向重要事业的垫脚石。
给出几个项目想法,你应该选择哪一个?以下是需要考虑的因素的简要清单:
• 这个项目会帮助你在技术上成长吗?理想情况下,它应该具有足够的挑战性来扩展你的技能,但不会太难以至于你几乎没有成功的机会。这将让你走上掌握越来越复杂的技术的道路。
• 你有好的队友吗?如果没有,有可以一起讨论的人吗?我们从周围的人身上学到了很多东西,好的合作者会对你的成长产生巨大的影响。
• 它能成为垫脚石吗?如果项目成功,其技术复杂性和/或业务影响是否使其成为更大项目的有意义的垫脚石?如果该项目比您以前参与过的项目更大,那么很有可能它将成为这样的垫脚石。
最后,避免分析瘫痪。花一个月的时间来决定是否要从事一个只需要一周就能完成的项目是没有意义的。在你的职业生涯中,你会从事多个项目,所以你将有充足的机会完善你对什么是值得的想法。考虑到潜在的人工智能项目数量巨大,你可以用“准备、开火、瞄准”来加速你的进步,而不是采用传统的“准备、开火、瞄准”的方法。
第6章:构建显示技能进步的项目组合
在职业生涯中,你可能会连续从事一些项目,每个项目都会有所成长,范围和复杂性。例如:
1.课堂项目:前几个项目可能是范围狭窄的家庭作业,有预先确定的正确答案。这些通常是很好的学习经历!
2.个人项目:您可以独自或与朋友一起继续从事小规模项目。
3.创造价值:最终,您将获得足够的技能来构建其他人认为更有实际价值的项目。这为您打开了获得更多资源的大门。例如,与其在业余时间开发机器学习系统,不如将其作为您工作的一部分,并且您可能会获得更多设备、计算时间、标签预算或员工人数。
4.范围和复杂性不断上升:成功相辅相成,为更多的技术发展、更多的资源以及日益重要的项目机会打开大门。
每个项目都只是漫长旅程中的一步,希望能够产生积极影响。此外:
• 不要担心起点太小。我的第一个机器学习研究项目之一涉及训练神经网络,以了解它模拟sinx函数的能力。虽然它用处不大,但却是一次很好的学习经历,让我能够继续进行更大的项目。
• 沟通是关键。如果你想让别人看到你工作的价值,并相信你能将资源投入到更大的项目中,你需要能够解释你的想法。要启动一个项目,传达你希望构建的价值将有助于让同事、导师和经理加入进来——并帮助他们指出你推理中的缺陷。完成后,清楚地解释你所取得的成就的能力将有助于说服其他人打开更大项目的大门。
• 领导力不仅仅适用于管理者。当你开始从事需要团队合作的大型AI项目时,无论你是否担任正式领导,你领导项目的能力都会变得更加重要。我的许多朋友都成功地从事了技术而非管理职业,他们能够通过运用深刻的技术见解来帮助指导项目——例如,何时投资新的技术架构或收集更多特定类型的数据——使他们成长为领导者,并帮助显著改善了项目。
建立项目组合,特别是能够展示从简单到复杂的项目随时间推移的进展的项目组合,对于找工作将会有很大的帮助。
第7章:启动你的人工智能职位搜索的简单框架
找工作有几个可预测的步骤,包括选择你想申请的公司、准备面试,最后选择一个职位并协商工资和福利。在本章中,我想重点介绍一个对许多人工智能求职者有用的框架,尤其是那些从不同领域进入人工智能的人。
如果你正在寻找第一份人工智能工作,你可能会发现转换职位或行业比同时转换两者更容易。假设你是金融服务行业的分析师:
• 如果你在金融服务领域找到一份数据科学或机器学习的工作,你可以继续运用你的特定领域知识,同时获得人工智能方面的知识和专业知识。从事这个职位一段时间后,你将更有能力转行到科技公司(如果这仍然是你的目标)。
• 或者,如果你成为一家科技公司的分析师,你可以继续使用你作为分析师的技能,但将它们应用于不同的行业。成为一家科技公司的一员也让你更容易从同事那里学习人工智能的实际挑战、在人工智能领域取得成功的关键技能等等。
如果你正在考虑下一份工作,请问自己:
• 你要转换角色吗?例如,如果你是一名软件工程师、大学生或物理学家,想要成为一名机器学习工程师,这就是角色转换。
• 你要转换行业吗?例如,如果你在一家医疗保健公司、金融服务公司或政府机构工作,但想去一家软件公司工作,这就是转换行业。
一家科技初创公司的产品经理在成为同一家公司(或不同公司)的数据科学家时,已经转换了角色。一家制造公司的营销人员在成为一家科技公司的营销人员时,已经转换了行业。一家金融服务公司的分析师在成为一家科技公司的机器学习工程师时,已经转换了角色和行业。
第8章:使用信息面试找到合适的工作
如果你准备转换角色(比如,第一次担任机器学习工程师)或行业(比如,第一次在AI科技公司工作),那么你可能对目标工作有很多不了解的地方。一种称为信息面试的技术是一种很好的学习方法。
信息面试是指在你想进一步了解的公司或职位中找到某人,然后非正式地采访他们关于他们的工作。此类谈话与找工作无关。事实上,在你准备开始找工作之前,采访那些与你的兴趣相符的人是很有帮助的。
提前研究受访者和公司,为信息采访做好准备,这样你就可以带着深思熟虑的问题进行采访。你可以问:
• 你通常一周或一天做什么?这个角色最重要的任务是什么?
• 哪些技能对于成功最为重要?
• 你的团队如何齐心协力实现目标?
• 招聘流程是怎样的?
• 回顾过去表现出色的候选人,是什么让他们脱颖而出?
信息面试与人工智能特别相关。由于该领域正在不断演变,许多公司使用职位名称的方式不一致。在一家公司,数据科学家可能主要被期望分析业务数据并在幻灯片上展示结论。在另一家公司,他们可能编写和维护生产代码。信息面试可以帮助你弄清楚特定公司的人工智能人员实际上在做什么。
随着人工智能领域机会的迅速扩大,许多人将首次从事人工智能工作。在这种情况下,信息面试对于了解会发生什么以及做好这项工作需要哪些技能非常有用。例如,你可以了解特定公司使用的算法、部署流程和软件堆栈。如果你还不熟悉以数据为中心的人工智能运动,你可能会惊讶地发现大多数机器学习工程师花了多少时间迭代清理数据集。
最后,要礼貌而专业,并感谢你面试过的人。当你有机会时,请也把这份爱心传递下去,帮助后来者。如果你收到DeepLearning.AI社区某人的信息面试请求,我希望你能伸出援手,帮助他们更上一层楼!如果你有兴趣了解更多关于信息面试的信息,我推荐加州大学伯克利分校职业中心的这篇文章。
我曾多次提到人脉和社区的重要性。你遇到的人除了提供有价值的信息外,还可以通过向潜在雇主推荐你来发挥宝贵的作用。
第9章:找到适合你的人工智能工作
在本章中,我想讨论一些找工作的细节。
典型的求职过程遵循相当可预测的路径。
尽管这个过程可能很熟悉,但每次求职都是不同的。以下是一些技巧,可帮助你增加找到支持你蓬勃发展的职业生涯并使你不断成长的职位的几率。
• 通过在线或与朋友交谈来研究职位和公司。
• 或者,安排与您感兴趣的公司人员进行非正式的信息面试。
• 你可以直接申请,或者如果可以的话,可以从内部人员那里获得推荐。
• 与向您发出邀请的公司进行面试。
• 收到一个或多个录用通知,然后从中挑选一个。或者,如果您没有收到录用通知,请向面试官、人力资源人员、在线讨论板或您网络中任何可以帮助您规划下一步行动的人寻求反馈。
注意基本面。一份引人注目的简历、技术项目组合和出色的面试表现将为你打开一扇大门。即使你有公司内部人员的推荐,简历和作品集也将是你与许多不了解你的人的第一次接触。更新你的简历,确保它清楚地展示了你的教育背景和与你想要的职位相关的经验。定制你与每家公司的沟通方式,解释你为什麽适合。
面试前,问问招聘人员会期待什么。花时间复习和练习常见面试问题的答案,复习关键技能,学习技术材料,确保它们在你的脑海中记忆犹新。面试后,做笔记,帮助你记住面试官说了什么。
尊重并负责任地行事。以双赢的心态进行面试和报价谈判。在社交媒体上,愤怒比合理传播得更快,因此有关雇主如何克扣员工工资的故事会被放大,而有关雇主如何公平对待员工的故事则不会。绝大多数雇主都是道德和公平的,所以不要因为关于少数受虐待人员的故事影响你的做法。如果你要离开工作岗位,请体面地离开。提前通知你的雇主,在工作的最后一小时全力以赴,尽可能地交接未完成的工作,并以尊重你被委托的责任的方式离开。
选择与谁共事。由于你将要从事的项目,你可能会倾向于采取某种立场。但是,与您共事的队友至少同样重要。我们会受到周围人的影响,因此你的同事将产生很大的影响。例如,如果你的朋友吸烟,那么您吸烟的可能性也会增加。我不知道有哪项研究表明了这一点,但我很确定,如果你的大多数同事都努力工作,不断学习并构建使所有人受益的AI,那么您也可能会这样做。(顺便说一句,一些大公司不会告诉您您的队友是谁,直到您接受了录用通知。在这种情况下,请坚持不懈,继续努力寻找并与潜在的队友交谈。严格的政策可能会使您无法适应,但在我看来,这会增加接受录用通知的风险,因为这会增加您最终遇到不合适的经理或队友的可能性。)
向社区寻求帮助。我们大多数人在职业生涯中只找过几次工作,因此很少有人能很好地完成工作。不过,总的来说,你所在社区的人们可能拥有丰富的经验。不要羞于向他们求助。朋友和同事可以提供建议、分享内部知识,并向你推荐可以提供帮助的人。当我申请第一份教职时,我得到了很多支持我的朋友和导师的帮助,他们给我的很多建议都非常有用。
我知道求职过程可能令人生畏。与其将其视为一次巨大的飞跃,不如考虑采用循序渐进的方法。首先确定可能的职位,然后进行一些信息面试。如果这些谈话告诉你,在你准备好申请之前,你还有更多要学习的东西,那就太好了!至少你有一条清晰的前进道路。任何旅程中最重要的部分是迈出第一步,而这一步可以是一小步。
第10章:构建人工智能职业生涯的关键
在规划成功之路时,还需要考虑以下几点:
当我们处理大型项目时,团队合作比个人合作更能取得更好的成果。与他人合作、影响他人和受他人影响的能力至关重要。因此,人际交往和沟通技巧确实很重要。
我讨厌社交!作为一个内向的人,参加聚会时微笑着和尽可能多的人握手是一件近乎可怕的事情。我宁愿呆在家里看书。尽管如此,我很幸运在人工智能领域结识了许多真正的朋友;我愿意为他们出力,他们也是我所信赖的人。没有人是一座孤岛,拥有强大的专业网络可以在你需要帮助或建议的时候帮助你前进。与社交相比,我发现考虑建立一个社区更有帮助。因此我没有试图建立我的个人网络,而是专注于建立我所属的社区。这有一个副作用,那就是帮助我认识更多的人,也交到了朋友。
(顺便说一句,我曾经是一个非常糟糕的沟通者。)
不幸的是,网上有很多关于这方面的坏建议。(例如,许多文章敦促对潜在雇主采取敌对态度,我认为这没什么用。)虽然找工作似乎是最终目标,但这只是漫长职业生涯中的一小步。
很少有人会知道你是在周末学习,还是在沉迷于看电视——但随着时间的推移,他们会注意到其中的区别。许多成功人士在饮食、锻炼、睡眠、人际关系、工作、学习和自我照顾方面养成了良好的习惯。这些习惯帮助他们在保持健康的同时继续前进。
我发现,那些在人生旅程的每一步都致力于帮助他人的人,往往会为自己取得更好的结果。我们如何才能在为自己打造激动人心的事业的同时,还能帮助别人吗?
第11章:克服冒名顶替综合症
在我们深入探讨本书的最后一章之前,我想先讨论一个严重的问题,即人工智能领域的新手有时会经历冒名顶替综合症,无论他们在该领域取得多大成功,他们都会怀疑自己是否是骗子,是否真的属于人工智能社区。
据估计,70%的人在某个时候都会经历某种形式的冒名顶替综合症。许多才华横溢的人都公开谈论过这种经历,包括前Facebook首席运营官谢丽尔·桑德伯格、美国第一夫人米歇尔·奥巴马、演员汤姆·汉克斯和Atlassian联合首席执行官迈克·坎农‑布鲁克斯。在我们的社区中,即使是在有成就的人中,也会发生这种情况。如果你自己从未经历过,那太好了!我希望你能和我一起鼓励和欢迎所有想加入我们社区的人。
人工智能在技术上非常复杂,而且它拥有相当一部分聪明且能力超群的人。但人们很容易忘记,要想擅长任何事情,第一步就是要熟练掌握它。如果你成功地熟练掌握了人工智能——恭喜你,你已经成功了!
我曾经很难理解线性回归背后的数学原理。当逻辑回归对我的数据执行得很奇怪时,我感到很困惑,我花了好几天才找到我实现的基本神经网络中的一个错误。今天,我仍然觉得很多研究论文很难读懂,最近我在调整神经网络超参数时犯了一个明显的错误(幸运的是,一位工程师同事发现并修复了这个问题)。
因此,如果你也觉得AI的某些部分具有挑战性,那也没关系。我们都经历过这种情况。我保证,每个发表过开创性AI纸的人都曾面临过类似的技术挑战。
我想让你清楚地知道:如果你想成为人工智能社区的一部分,那么我张开双臂欢迎你。如果你想要加入我们,你完全属于我们!
我三岁的女儿(她几乎数不到12)经常尝试教我一岁的儿子一些东西。无论你进步多少——如果你的知识至少和三岁孩子一样多——你都可以鼓励和激励你身后的人。这样做也会对你有帮助,因为你身后的人会认可你的专业知识,也会鼓励你继续进步。
当你邀请其他人加入人工智能社区时(我希望你会这样做),这也会减少任何关于你已经是我们中一员的疑虑。
人工智能是我们这个世界中如此重要的一部分,我希望每个想成为人工智能一部分的人都能像我们社区的一员一样感到宾至如归。让我们共同努力,实现这一目标。
没有人是万事通。认清自己擅长什么。如果你擅长的事情是理解并向朋友解释《The Batch》中十分之一的文章,那么你就成功了!让我们努力让你理解五分之一的文章。
你有支持你的导师或同事吗?如果没有,请参加Pie&AI或其他活动,使用讨论板,并努力寻找一些。如果你的导师或经理不支持你的成长,请寻找那些支持你的人。我也在研究如何发展一个支持性的AI社区,并希望让每个人都能更轻松地找到并提供支持。
最后的想法:让每一天都有意义
每年在我生日的时候,我都会思考过去的日子和未来的日子。
当我询问朋友时,许多人会选择几十万中的一个数字。(还有很多人忍不住要计算答案,这让我很烦!)
当我还是一名研究生时,我记得将我的统计数据输入死亡率计算器来计算我的预期寿命。计算器显示我预计总共还能活27,649天。我突然意识到这个数字有多小。我用大字体打印出来并贴在办公室墙上,作为每日提醒。
这就是我们与亲人共度、学习、建设未来和帮助他人的所有日子。无论你今天做什么,它是否值得你生命的三万分之一?
人类的典型寿命是多少天?
也许你数学很好;我相信你能够通过快速计算回答以下问题。但让我问你一个问题,请凭直觉回答,不要计算。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。