🚀 快速阅读
-
功能:支持多模态 RAG、多数据类型、上下文压缩和多种检索器类型。
-
技术:基于压缩编码器和选择性压缩机制,显著降低计算负担。
-
应用:适用于开放域问答、对话系统、文档摘要与生成等知识密集型任务。
FlexRAG 是什么
FlexRAG 是中科院推出的高性能多模态 RAG 框架,旨在解决传统 RAG 系统在处理长上下文时面临的计算成本高和生成质量不足的问题。通过将检索到的上下文信息压缩成紧凑的嵌入表示,显著降低计算负担。
FlexRAG 的核心组件包括压缩编码器和选择性压缩机制,前者负责将长上下文转化为固定尺寸的嵌入,后者则通过评估信息的重要性来选择性地保留关键信息。这种设计提高了生成模型的表现,还支持灵活的压缩比和多模态数据处理。
FlexRAG 的主要功能
-
多模态 RAG:支持多模态 RAG,为不同数据模态开辟了广泛的应用可能性。
-
多数据类型:支持多种数据格式,包括文本(例如 CSV、JSONL)、图像、文档、网页等,可以灵活地处理各种数据源。
-
上下文压缩:通过压缩编码器将检索到的长上下文信息转化为紧凑的嵌入表示,减少计算负担。
-
多种检索器类型:支持稀疏检索器、密集检索器、基于网络的检索器和多模态检索器,灵活应用于不同场景。
-
提示微调:通过学习软提示(soft-prompt),改善下游任务的性能,使模型更好地适应特定任务。
FlexRAG 的技术原理
-
压缩编码器:负责将检索到的长上下文信息转化为紧凑的嵌入表示,通过提取关键信息和特征,减少输入给下游模型的负担。
-
选择性压缩机制:通过评估不同上下文信息的重要性,优先保留对生成最为关键的信息,动态调整保留的上下文信息。
-
双阶段训练工作流:分为预训练和微调两个阶段,预训练建立模型的基本语言理解和生成能力,微调优化模型在特定任务上的表现。
如何运行 FlexRAG
1. 安装 FlexRAG
可以通过 pip 安装 FlexRAG:
pip install flexrag
或者从源码安装:
pip install pybind11 git clone https://github.com/ictnlp/flexrag.git cd flexrag pip install ./
2. 准备检索器
下载并准备检索器所需的语料库和索引:
wget https://dl.fbaipublicfiles.com/dpr/wikipedia_split/psgs_w100.tsv.gz gzip -d psgs_w100.tsv.gz
3. 运行 FlexRAG 助手
运行 FlexRAG 的示例 RAG 应用:
python -m flexrag.entrypoints.run_interactive \ assistant_type=modular \ modular_config.used_fields=[title,text] \ modular_config.retriever_type=dense \ modular_config.dense_config.top_k=5 \ modular_config.dense_config.database_path=${DB_PATH} \ modular_config.dense_config.query_encoder_config.encoder_type=hf \ modular_config.dense_config.query_encoder_config.hf_config.model_path='facebook/contriever' \ modular_config.dense_config.query_encoder_config.hf_config.device_id=[0] \ modular_config.response_type=short \ modular_config.generator_type=openai \ modular_config.openai_config.model_name='gpt-4o-mini' \ modular_config.openai_config.api_key=$OPENAI_KEY \ modular_config.do_sample=False
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。