DeepSeek 以更低的成本训练出可以比肩 GPT-4o 的性能,不仅让缺乏算力的国产大模型看到了希望,甚至连国外网友也直呼真香。
最近看到一众国外小哥分享了一款名为 browser-use 的智能体,它可以自动使用浏览器帮你完成一些简单任务。
他们在 browser-use 中统一使用 DeepSeek 大模型
由于智能体会自主规划任务,所以 token 消耗不可控,这就要求大模型既要能打,又要价格便宜,成本可控。
browser-use 这个智能体看上去挺有趣的,并且在 GitHub 上开源了,我也忍不住安装使用了一下。
安装特别简单,一条命令搞定。然后用它完成了一个简单的任务,搜索 ‘渡码’,并打开我的博客。
browser-use 的核心是通过 LLM 的推理能力分析浏览器页面的HTML内容和文本信息,输出可执行的指令,交给浏览器自动化工具(Playwright)执行。
这些带颜色的框,就是 browser-use 提取的页面信息。
这个任务的代码也是非常简单,不到20行。
如果不想写代码,browser-use 也提供了一个webui,通过可视化方式配置任务。
不知道大家有没有关注到最近市面上涌现出一批新的Agent智能体,并且面向的都是可以自主决策、自动完成任务的真正智能体。
1.15日,OpenAI 发布首个 AI Agent 产品——Tasks,自动帮你在手机、电脑上创建提醒,如:“提醒我早发邮件给老板”。
Tasks 可能是更复杂的AI Agent产品 Operator 的雏形,我在之前的文章中提到过 Operator ,是一款可以操作电脑(Computer use)完成任务的智能体。
1.24日,清华、复旦和斯坦福的研究团队联合开发并开源了一款名为 Eko 的 Agent 开发框架,通过自然语言快速构建可用于生产的“虚拟员工”。被认为是对标 OpenAI 的 Operator 项目。
另外,MiniMax 近期开源了专为 AI Agent 设计的大模型,支持400万 token 的上下文,目的是满足Agent的持续记忆和多Agent复杂通信需求。
当然很多朋友会觉得,现在的智能体只能完成简单的任务,显得有些鸡肋,完全不如自己动手操作。
但我们看看AI编程领域,大模型刚出来时候,很多模型连冒泡排序都写不对,而现在 WinSurf、Cursor 这样AI编程工具,让不会写代码的人都能开发项目。
智能体这一新趋势同样值得我们关注,去见证其一步步的演进与突破。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。