比Manus还牛?支持DeepSeek的快速构建agent工具 开源
源代码
https://www.gitpp.com/deep-ai/deepseek-agentstack
采用MIT开源协议,可以商业化
一个开源的AI代理开发框架,旨在简化AI代理项目的创建和部署流程。其核心定位类似于前端领域的create-react-app,通过预配置模板和命令行工具(CLI),帮助开发者快速搭建包含完整"代理栈"的AI应用。截至2025年3月,项目仍处于公开预览阶段,采用MIT开源协议,支持macOS、Windows和Linux系统。
核心设计理念:
零配置启动:预置LangChain、LlamaIndex等工具链,开发者无需手动配置依赖
框架无关性:支持CrewAI、AutoGen(开发中)等主流代理框架
模块化工具集成:通过简单命令即可添加网页抓取、RAG等能力
开发运维一体化:内置测试运行器、覆盖率报告和可观测性工具
Manus火爆的原因:
-
颠覆性创新:Manus是全球首款自主执行型AI Agent,它彻底改变了人们对AI的传统认知。传统AI助手大多只能提供建议或答案,而Manus能够直接交付完整的任务成果,从“建议者”升级为“执行者”。例如,在筛选简历任务中,Manus能自动解压缩文件、逐页浏览简历、记录重要信息,并生成排名表格和评估报告,甚至能编写Python脚本生成Excel表格。
-
技术领先:Manus在权威的GAIA基准测试中创下新纪录,性能远超OpenAI的同类产品。其背后的技术突破包括混合架构下多模型协同推理能力、超大规模优质训练数据,以及工程化实现的异步处理机制。
-
高效便捷:Manus支持异步工作,用户在下达指令后可以关闭电脑,任务完成后会自动通知用户。这种“交钥匙式”的交付能力极大地提高了工作效率,尤其适合快节奏的工作环境。
-
市场需求:随着企业对高效、智能工具的需求日益增长,Manus的出现恰逢其时。它可以帮助企业降低运营成本,提升工作效率,从繁琐的工作流程中解放出来。
基于大模型的Agent如此强大的原因:
-
深度学习与大模型:基于大模型的Agent拥有海量的参数和训练数据,使其能够理解和生成复杂的自然语言,具备强大的语言理解和生成能力。例如,Anthropic的Claude 3.5 Sonnet拥有1750亿参数的Transformer架构,能够轻松理解用户的指令。
-
多模型协同:大模型Agent内部通常由多个子模型协同工作,每个子模型负责不同的任务,如阅读理解、数据分析、决策制定等。这些子模型通过高效的协同机制,能够处理更为复杂和抽象的任务。
-
工具调用能力:大模型Agent能够直接操作各种工具和平台,如浏览器、代码编辑器、办公软件等,甚至能调用API抓取实时数据。这种能力使得Agent能够打通“思考”到“执行”的闭环,直接交付任务成果。
大模型给RPA带来的变更:
-
降低学习门槛:传统RPA技术需要用户具备编程基础,而大模型RPA则无需编写代码,用户只需通过自然语言指令即可实现自动化操作。这使得更多人能够轻松上手RPA,推动其在企业中的普及。
-
提高自动化效率:大模型RPA能够直接理解用户的意图,并自动生成对应的自动化脚本。这极大地减少了手动编码的时间和工作量,提高了自动化效率。同时,大模型RPA还能根据不同的需求生成定制化代码,提高系统的适应性。
-
处理复杂场景:传统RPA技术主要侧重于执行具体的操作流程,对于复杂的语言理解和生成能力相对较弱。而大模型RPA则具备强大的语言理解和生成能力,能够处理更为复杂和抽象的任务。例如,在客户服务领域,大模型RPA能够理解模糊需求,并动态调用API生成解决方案。
-
智能决策支持:大模型RPA不仅能够执行重复性任务,还能提供智能决策支持。通过分析和处理大量数据,大模型RPA能够生成有价值的洞察和建议,帮助企业做出更加明智的决策。
综上所述,Manus的火爆源于其颠覆性的创新和技术领先性,而基于大模型的Agent之所以如此强大,是因为它们拥有深度学习与大模型的支持、多模型协同的能力以及强大的工具调用能力。大模型给RPA带来了学习门槛的降低、自动化效率的提高、复杂场景的处理能力以及智能决策支持等变更,推动了RPA行业的快速发展。
比Manus还牛?支持DeepSeek的快速构建agent工具 开源
源代码
https://www.gitpp.com/deep-ai/deepseek-agentstack
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。