国外AI赋能教育的35个应用场景

前言:人工智能(AI)正在迅速重塑教育的未来,从个性化学习到自动化管理,从提高学习参与度到提升教育质量,人工智能(AI)正在打破传统教育的壁垒,从根本上改变教学和学习的方式。这些都预示着一个更加个性化、高效和包容的教育未来。

img

AI重构未来

AI正快速改变我们生活的方方面面、重塑千行百业。本公众号持续跟踪AI前沿领域,AI驱动的行业和智能科技产品,探索AI应用场景和AI智能体aiagent落地途径,分享AI科普知识和工具使用心得!

1、AI赋能教育的九大优势

将AI融入课堂,教育工作者可以个性化学习体验,简化行政任务,并为学生提供更有效的支持。AI为教育领域带来以下具体优势:

1)增强个性化学习:AI根据每个学生独特的学习方式和节奏来定制教育内容。例如,Khanmigo、DreamBox和Smart Sparrow等平台可以实时分析学生的反应,以动态调整课程,使每个学生都能按照自己的速度掌握概念。

img

Khanmigo

img

DreamBox

img

Smart Sparrow

2)自动化教育行政任务:应用AI自动执行评分、安排和报告生成等任务,从而大大减轻教育工作者的工作量。Gradescope等工具可以对作业进行一致且客观的评分,而AI调度软件可以帮助优化课程表和资源分配。

img

3)提高学习者的参与度:AI通过游戏化的内容和自适应学习平台,使学习更具互动性和吸引力。Kahoot!和Minecraft: Education Edition等程序使用AI来创建响应学生输入的互动测验和模拟,从而保持学习者的积极性和参与度。

img

Kahoot!

img

Minecraft

img

Education Edition

4)提高可访问性:AI驱动的辅助技术为残疾学生提供支持,确保更具包容性的学习环境。Notta等语音识别软件将口语转录为文本,为听力障碍学生提供帮助,AI支持的教育游戏为幼儿提供个性化的学习体验。

img

5)提供可操作的见解:AI分析大量的教育数据,为教育工作者提供可操作的见解。Knewton Alta等平台跟踪学生在各种指标上的表现,帮助教师发现学习差距并相应地调整教学策略。

img

6)提高课堂管理效率:AI工具可以帮助教师管理课堂行为和参与度。例如,HMH Classcraft使用AI来游戏化课堂管理,跟踪学生行为并奖励积极行为,这有助于维持高效且积极的课堂环境。

img

7)提高安全性和评估完整性:AI通过高级监考和剽窃检测来增强评估的安全性和完整性。Turnitin等工具检查学生提交作品的原创性,AI支持的监考系统会监控考试环境以防止作弊。

img

8)支持终身学习和专业发展:AI通过推荐个性化的资源和课程来支持教育工作者的持续学习和专业发展。Edthena等平台会根据教育工作者的职业目标和教学需求提供量身定制的学习路径。

img

9)更大的可扩展性:AI可以扩展教育计划,以容纳更多的学生,而不会影响质量。基于AI的平台可以处理大量数据,并为越来越多的学习者提供个性化的学习体验,从而确保教育的可访问性和一致性。

2、AI在教育领域的35个应用场景

AI正在通过各种前沿工具彻底改变教育,这些工具可以增强教学和学习效果。从个性化体验到优化行政管理任务,以下是AI正在改变现代教育的39个应用场景

1)自适应学习:AI驱动的平台可以实时评估学生的技能水平,并定制教学内容以满足个人需求。这些系统会根据学生的反应动态调整课程,提供定制化的学习路径,以帮助学生按照自己的节奏掌握概念。

2)辅助技术:诸如语音识别软件之类的工具可以将口语转录为文本,从而帮助有听力障碍或阅读障碍等残疾的学生更充分地参与课堂活动,方法是将语音转换为文本,反之亦然。

3)数据和学习分析:通过AI分析来自在线学习门户网站、课堂出勤率和成绩的数据。这些数据可以深入了解学生的表现,从而帮助教育工作者发现趋势并定制教学,以弥补理解和表现方面的差距。

4)课堂管理:使用AI来游戏化课堂管理。AI可以跟踪学生的行为和参与度,用积分和徽章奖励积极行为,并为教师提供有关课堂动态的见解,以管理和激励学生。

5)智能辅导系统:AI驱动的辅导系统(如Carnegie Learning)提供个性化的反馈和支持,适应个人学习风格和需求,以帮助学生理解复杂的概念并提高学习成绩。

img

6)自动化评分和评估工具:这些工具使用AI来评估作业并提供详细的反馈,从而简化评分过程,确保一致性并节省教师的时间。AI还可以通过分析内容的一致性和相关性来对更抽象的评估(如文章)进行评分。

7)聊天机器人和虚拟助手:AI驱动的聊天机器人(如Mainstay)可以在课堂之外为学生提供即时支持和帮助。这些聊天机器人可以回答问题,提醒学生截止日期,并指导他们完成管理流程,从而提高参与度并促进独立学习。

img

8)课程规划:通过分析教育数据以识别趋势和差距,AI帮助教育工作者规划课程。这可以确保课程保持相关性、全面性并与学习目标保持一致,方法是根据最新的教育需求和标准建议更新。

9)互动和学习游戏:AI通过创建引人入胜的自适应学习体验来增强教育游戏。这些游戏使用AI来提供适应学生反应的任务和挑战,从而促进对复杂学科的积极参与和理解。

10)个性化学习:AI学习平台通过适应学生理解概念的独特方式来创建定制化的学习体验。这可以减轻认知负荷,并确保每个学生都能获得根据其学习风格和节奏量身定制的指导。

11)任务自动化:借助AI自动化执行日常任务,如家庭作业评估、测试评分和报告生成。这使教育工作者可以专注于更有意义的教学活动和学生互动。

12)智能内容创建:使用AI来帮助教师创建数字课程和学习材料。Magic School AI和Eduaide.AI等工具可以简化课程计划、创建评估、编写个性化教育计划 (IEP) 等,从而实现学习现代化并简化教学。

img

img

13)监考:AI驱动的监考系统可以监控考试以防止作弊并确保学术诚信。这些系统可以分析学生在考试期间的行为,为可疑活动提供实时警报,并维持安全的测试环境。

14)语言学习:Duolingo等AI工具使用自适应算法来个性化语言学习体验。AI会根据用户的进度调整练习的难度,从而确保最佳的学习曲线并增强语言习得。

img

15)弥合技能差距:借助AI分析学生的表现数据来识别学生的技能差距,并提供有针对性的资源来弥补这些缺陷。这可以帮助学习者掌握各个学科的知识,并为他们未来的学业挑战做好准备。

16)阅读障碍检测:Dysolve等AI工具可以通过分析阅读模式和错误来及早发现阅读障碍和其他学习障碍。这些工具提供量身定制的支持和干预措施,以帮助受影响的学生取得成功,例如专门的阅读计划和练习。

17)教育娱乐和游戏化:通过AI将游戏元素融入到教学内容中,使学习变得有趣且引人入胜。平台使用AI来创建互动测验和游戏,以促进对教育材料的更深入理解和记忆。

18)教育行政支持:利用AI协助完成行政任务,如安排、预算编制和资源分配。Fetchy等工具通过提供数据驱动的见解和建议来优化教育运营,从而提高效率并减少教育工作者的工作量。

img

19)虚拟3D教室:元宇宙创建了沉浸式虚拟教室,学生可以在其中与同学和老师互动。Engage VR等平台提供虚拟环境,可以超越传统方法来增强学习体验,从而为互动和体验式学习提供机会。

img

20)数字学习:通过AI提供沉浸式视频内容和互动模拟来增强数字课堂。Nearpod等工具使用AI通过互动课程和实时学生反馈来提供引人入胜且有效的学习体验。

img

21)虚拟校园活动:应用AI促进虚拟课外活动,使学生可以从世界任何地方参加俱乐部和活动。Remo等平台使用AI来创建用于社交和协作的虚拟空间,从而在课堂之外提高学生的参与度。

img

22)跨学科学习:借助AI打破学科之间的障碍,促进了跨学科学习。Wolfram Alpha等工具使用AI来演示各种理论的实际应用,从而帮助学生理解不同研究领域之间的相互联系。

img

23)模拟真实场景:借助AI在虚拟环境中复制真实场景,从而使学生可以通过实践经验进行实验和学习。Labster等平台提供虚拟实验室,学生可以在其中安全地探索和试验科学概念。

img

24)提高意识:利用AI教导学生有关气候变化和贫困等社会问题。EarthSpeakr等工具使用AI来提供深刻的情感理解以及理论知识,从而提高对全球挑战的认识和行动。

img

25)虚拟之旅:AI驱动的虚拟之旅使学生可以从教室中探索世界各地。Google Expeditions等平台使用AI来创建沉浸式虚拟实地考察,从而拓宽学生的视野并增强他们的文化理解。这些虚拟旅行也可用于促进大学的虚拟参观。

img

26)客座演讲者和活动:促进虚拟活动和客座讲座,使学生可以向各个领域的知名人士和专家学习。BigMarker等工具使用AI来组织和管理虚拟会议,从而通过专家的见解来增强学习体验。

img

27)预测分析:学习分析中的AI算法可以帮助教育工作者发现趋势并预测学生的表现,从而及早干预可能遇到困难的学生。

28)家长与教师沟通:Remind等AI驱动的工具可以促进家长与教师之间的无缝沟通,从而可以实时更新学生进度和课堂活动,从而提高家长的参与度和对教育过程的支持。

img

29)考试准备:Magoosh等AI平台通过分析学生的表现并调整练习题和学习计划以侧重于学生最需要改进的领域,从而提供个性化的考试准备,从而提高他们的成功机会。

img

30)学习管理系统 (LMS):应用AI提供个性化的学习路径、自动化管理任务以及提供对学生表现和参与度的数据驱动的见解来增强LMS平台。

31)专业发展:通过AI工具为教育工作者的职业目标和教学需求推荐课程和资源,从而为他们提供个性化的专业发展机会。

32)剽窃检测:通过AI工具将学生提交的作品与庞大的学术内容数据库进行比较来分析其是否存在潜在的剽窃行为,从而确保学术诚信和学生作品的原创性。

33)增强的在线讨论区:通过审核内容、促进讨论和提供个性化反馈来增强在线讨论区。Packback等工具使用AI来鼓励在线论坛中的批判性思维和参与度,从而创建更具活力和互动性的学习环境。

img

34)学术研究:分析大型数据集、识别趋势和生成见解来协助学术研究。IBM Watson Discovery等AI工具为研究人员提供高级分析功能,帮助他们发现新发现并加快研究过程。

35)互联校园:集成了各种校园系统,以创建互联且高效的教育环境。Cisco Digital Network Architecture (DNA) 等工具使用AI来管理和优化校园基础设施,从而增强连接性并改善整体校园体验。

结语:

人工智能(AI)在教育领域的应用,代表着一场深刻的变革,它不仅预示着教育方式的未来,更在当下就提供了前所未有的机遇。尽管在实施过程中,我们仍需关注数据隐私、伦理道德以及潜在的非个性化等问题,但人工智能所展现出的巨大潜力不容忽视。通过智能辅导系统、自适应学习平台和虚拟现实教室等创新工具,人工智能能够满足不同学习风格和需求的个体,从而实现真正的个性化教育。

展望未来,随着技术的不断进步和应用场景的日益丰富,人工智能将在教育领域发挥更加重要的作用。我们有理由相信,一个更加个性化、高效和包容的教育未来正在到来,而人工智能将是实现这一目标的关键驱动力。通过深思熟虑和负责任地使用人工智能,我们可以最大限度地发挥其在教育领域的优势,为学生和社会创造更大的价值。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值