文章目录
概述
- 问题:A/D和D/A会有哪些因素决定系统的精度和速度?
- 取决于系统的要求和你的成本。
- 任务:用模拟和电路的知识加一点数电的知识,来完成最基本的A/D和D/A转换,应用为主
- 可以是电压量也可以是电流量
D/A转换器
权电阻网络DAC
- 负反馈放大器,设A为理想放大器,即Av=∞,I=0,Ro=0。当接成深度负反馈时,必有V-=V+=0,且I=0
- 电阻,取值都是2倍的关系,如果数字量权重越低,电阻值越大,电流就越小
- 权电流。下面的开关会受数字量的控制(不要想成数据选择器,因为数据选择器是电压,这里是电流),这里的开关是模拟开关
- 最后的输出取决于求和电流,输出电压就等于反馈电阻乘电流
- 但是在计算过程中,把R约去了,这是对制造提出了一个高的要求
- 优点:简单
- 缺点:电阻值相差大,难以保证精度,且大电阻不宜于集成在IC内部
- 因此设计出了倒T型电阻网络
- 这里面的阻值只有两种,R和2R。但是这个电流依然实现了权电流
- 开关通断分别接在放大器两边,但是由于是理想电压器,虚短虚断,所以对电压分析是一样的,简化成下面的图
- 从每一个点看进去等效电阻都是R,所以电流从Vref进来,每过一个点就等分,所以形成了全电流
- 但是这个电流流向求和点还是流向地,这个是取决于开关
-电压取决于电流是否流入实际的求和点,!!这个公式和前面的完全一样但是电路简单的多,所以这个电路是实际D/A的使用电路 - Vref取“负”,则得到的Vo为“正”
具有双极性输出的DAC
- 当我们说D的时候都把D当作无符号数来看待,也就是一拿到就认为它是一个正数。但是我们在数字量处理的时候经常希望有正有负,!!这时候我们用补码表达
- 问题:我希望我的D/A是一个双极型的D/A,怎么办?
- 在设计和制造D/A的时候就把双极性的最高位权值设成负的,但是这样就要改变电路结构。所以我们希望在单极性的D/A的基础上,通过外加电路,实现双极性D/A
- 单极性的先取反然后再偏移。将符号位取反后接至高位输入,将输出便宜使输入为100时,输出为0
- 电路实现
(1)取反(加反相器)
(2)加参考电压和Rb
问题:这个参考电压和Vref存在什么关系?
(1)极性相反
(2)Vb和Rb可以任意取,但是Vb/Rb一定要等于原来最高位为1时的对应值
- 所以,不需要i单独设计一个能满足补码输出正负的一个D/A,只要把单极型的D/A进行外接改造,改造记住两条
(1)最高位取反
(2)加偏移,加偏移的条件是把最高位为1的时候的输出电流抵消掉
D/A使用需要注意
- 位数,位数就对应每一个台阶的度(纵轴),位数越高,台阶越小,Δ越小,平滑度越好
- 速度。一般D/A的速度比较快,原因是纯模拟,一般情况下能够满足我们的要求(要求是前端数字量的每一次变化都应该让D/A能够稳定输出一个值之后再变新值),所以D/A频率的选择和前端的数字量有一个配合
- D/A的基本思想:把我们需要转变的数字量的每一份都赋给它一个Δ的模拟量,而这个Δ通常情况下是电流或者电压
D/A的转换精度
- 分辨率(理论精度)
(1)用输入数字量的二进制数码位数给出
(2)n位DAC,应能输出0-2的n次方-1个不同的电压等级,区分出输入的00-0到11-1,2的n次方个不同状态 - 转换误差(实际精度)
(1)用最低有效位的倍数来表示
(2)有时也用绝对误差与输出电压满刻度的百分数来表示
有一个问题:如果转换误差太大,可能把理论精度淹没掉(例:误差比最后一位大,最后一位就没了)
D/A的误差分析
- ΔVref引起的误差
如果在这个公式认为电阻制造已经足够精良了,把R已经约分掉了,那么Vref的精度就会直接影响到输出的精度(在模电中专门学了电源,电流源希望电流稳定,电压源希望电压稳定。电压负反馈稳定输出电压,电流负反馈稳定输出电流),当数字量比较小的时候误差可能小,但是输出量越大误差就越大。
- 漂移误差
由OPA零点漂移导致的曲线漂移(温度升高会影响半导体中的少子数量,从而增加整个的载流子数量),也就是说之前分析把放大器当成理想的了。
- 非线性误差(因为制作工艺)
模拟开关的压降内阻不为0,电阻网络的偏差引起。所有的模拟开关分析的时候当成了理想开关,没有算电阻值,只管它的通断,但是实际上并非如此,然后电阻网络也有偏差。
- 总误差:几种误差的绝对值之和。所以想要做到高精度很困难,这也是为什么数字芯片很便宜,但是想要模拟的高精度价格很高
- 计算参考电压的相对稳定度就是最大的允许误差和数字量取最大值时的计算。
A/D转换器
基本原理
- 输入为连续变化的电压,输出为不连续的数字量
- 在看D/A的时候,每一个台阶都是由数字量之间最小Δ引起的
- 一个模拟量是连续的,但是当转换成数字量的时候一定会有取舍(高度的台阶和时间),所以首先做的是时间上的离散然后是数量上的离散
- 问题:点的数量是多好还是少好?
- 显然不能太少,需要根据采样定理
!!!采样定理(奈奎斯特定理,香农定理)
采样频率应该大于待采信号最高频率分量的两倍,一般取3-5倍,即:
- 这个时间有两个考虑,一个是我的信号在这个频率的基础上能够重建,还有一个考虑是留给A/D转换的时间
- 在时间上的离散做完之后,如何取到某一个点?
- 需要一个电路把值取出来,而且这个电路最好不要影响我的信号源。
量化和编码
- 量化:将取样电压表示为最小数量单位(Δ)的整数倍
- 编码:将量化的结果用代码表示出来(二进制,二-十进制)
- 量化误差:当采样电压不能被Δ整除时,将引入量化误差
- 量化有以下两个方式
(1)第一个的量化误差就是1/8V
(2)以每一个Δ的中点作为比较点,单次比较的量化误差会减小到1/2Δ,但是整体的误差还是Δ
直接ADC
并联比较型A/D转换器
- 前面的比较器通过每一个刻度的比较可以得到Δ=2/15V的一堆值
- 下一步要把这些值转换,但是转换之前加了一级寄存器(中间封装起来了)
(1)除非前面的模拟值一直不变,否则不加寄存器的话后面的值会一直跳,没有稳定输出,因为后面的转换是需要时间的
(2)这个电路并没有对模拟信号进行处理,模拟信号的变化会实时反应在和比较器的比较当中,如果加了触发器,就相当于加了时间上的离散 - 下面就是编码,得到一张真值表
- 设计电路(输入七位,输出三位)
- 真值表不全,没列出的就是约束项,可以用来化简,得到电路
- 特点:
(1)快,CP触发信号到达输出稳定建立只需要几十ns(目前位置最快的A/D)
(2)精度,受参考电压、分压网络等因素影响
(3)有存储器,可以没有S/H电路(采样-保持电路,用寄存器达到了这个效果)
(4)电路规模,n位需要2的n次方-1比较器,触发器
采样保持电路
- 采用了一个运放,用负反馈的接法
- 加了一个T,当开关来用
(1)当T导通后,Vi在Vo会建立起来,但是需要一些时间,时间取决于Rf和Ch,充完电之后Vi和Vo是相等的
(2)再把开关断开,Vo就会因为Ch冲的电荷保持
(3)所以是先采样再保持 - 但是这个电路有一个问题:如果想采集的快,RC常数要小
- 但是输入阻抗大的话对前端的输入影响小。所以这个电路不理想,可以改,而且保持的那部分希望能一直保持不会掉
- 希望:
(1)加大输入电阻
(2)减小输出电阻
(3)Av=1,希望是比例系数是1的这么一个采样 - 改进的电路如图:
反馈比较型ADC
- AD的电路经常会比DA麻烦的原因是AD的内部经常会有一个DA
计数型
-
基本原理:取一个“D”加到DAC上,得到模拟输出电压,将该值与输入电压比较,如两者不等,则调整D的大小到相等为止,则D为所求值
-
计数器可以自己循环,给脉冲就一直跑。计数器给出一个数字量,这个数字量到DA,在和模拟量进行比较
-
其实变成了一个搜索问题,其实希望从0000-1111找一个量
-
如果这么做简单,但是慢
逐次渐近型
- 用的是二分法的原则
- 高位先置“1”,如果Vo > Vi,则保留一,否则改为0,;再将次高位置1,以此类推
- 只需要比较n次就够了
- 电路不太复杂而且比上面的技术型快得多
- 3位逐次逼近型ADC的电路原理图如下所示
- 最下面是移位寄存,上面放了3个SR触发器(边沿触发)
- 3位5个CP,N位(n+2)个CP
- 问题:最上面的Δ/2是干什么的?
- 就是那个半步的便宜(1/8,2/15那个)
间接ADC
双积分型(V-T变换型)
先把V转换成与之成正比的时间宽度信号,然后在这个时间内用固定的频率脉冲计数。
- 核心在积分器,控制原理:
(1)通过两个开关,能够控制这个电路输入打向哪一端开始积分
(2)起始状态:计数器清零
(3)VL=1,转换开始(S0断开)
(4)S1打向Vi,积分器作固定时间T1的积分,T1期间Vi不变(要求前面有采样保持电路)
(5)S1打向Vref,积分器作反相积分至Vo=0
(6)令计数器在T2期间用固定的频率脉冲计数
- 电路图
V-F变换型
ADC的速度和精度
- 速度
(1)并联比较型:<1us
(2)逐次逼近型:几-100us/次
(3)双积分型:几十ms/次(!抗干扰最好的) - 转换精度:
(1)分辨率 – 位数
(2)转换误差 – 实际电路