LLama 3 跨各种 GPU 类型的基准测试

2024 年 4 月 18 日,AI 社区对 Llama 3 70B 的发布表示欢迎,这是一款最先进的大型语言模型 (LLM)。该型号是 Llama 系列的下一代产品,支持广泛的用例。该模型 istelf 在广泛的行业平台上表现良好,并提供了新功能,包括改进的推理。

在之前的博客文章中,我们研究了使用推理引擎对 Llama 3 的量化和非量化版本执行推理的知名应用程序。我们在第 1 部分介绍了量化版本,在第 2 部分介绍了非量化版本。研究的重点是研究什么是最简单、性能最好的引擎,可以将 Llama 3 作为 API 端点。这篇文章着眼于此项目的下一次迭代,并着眼于不同 GPU 类型的性能。

经过测试的 GPU

在深入研究结果之前,让我们简要介绍一下我们测试过的 GPU:

  • NVIDIA A6000:以其高内存带宽和计算能力而闻名,广泛用于专业图形和 AI 工作负载。
  • NVIDIA L40:专为企业 AI 和数据分析而设计,提供均衡的性能。
  • NVIDIA A100 PCIe:用于 AI 和高性能计算的多功能 GPU,采用 PCIe 外形尺寸。
  • NVIDIA A100 SXM4:A100 的另一种变体,针对 SXM4 外形尺寸的最大性能进行了优化。
  • NVIDIA H100 PCIe:该系列的最新产品,拥有更高的性能和效率,专为 AI 应用程序量身定制。

基准测试方法论

我们可以使用许多不同的引擎和技术来判断各种 GPU 的性能。我们决定利用 Hugging Face Text Generation Inference (TGI) 引擎作为为 Llama 3 提供服务的主要方式。这样做有一个主要原因。它是我们见过的唯一一个提供基准测试机制的推理引擎。

TGI 提供的基准测试允许查看批量大小、预填充和解码步骤。这是查看每秒平均、最小和最大令牌以及 p50、p90 和 p99 结果的绝佳方式。如果您想了解更多关于如何通过 TGI 进行基准测试的信息,请联系我们,我们很乐意为您提供帮助。

结果

RTX A6000

图:4xA6000 上的基准测试

L40型

Figure: Benchmark on 4xL40

A100 PCIe

Figure: Benchmark on 2xA100

A100 SXM4

Figure: Benchmark on 2xA100

H100 PCIe

图:2xH100 上的基准测试

长期以来,A100 都被认为是在大模型生产系统中的不二之选。

结论

Hugging Face TGI 提供了一种一致的机制,可以在多种 GPU 类型上进行基准测试。根据这些结果的性能,我们还可以计算出最经济高效的 GPU 来运行 Llama 3 的推理端点。了解这些细微差别有助于在部署 Llama 3 70B 时做出明智的决策,确保您获得最佳性能和投资价值。

 

### sglang性能基准测试参数配置方法 对于sglang性能基准测试,项目`sglang/benchmark/blog_v0_2`提供了详细的设置指南和脚本支持[^1]。为了执行有效的性能基准测试,需遵循特定的参数配置流程。 #### 配置环境变量 首先,确保安装了必要的依赖库,并设置了运行所需的环境变量。这通常涉及指定GPU设备编号、内存分配策略以及其他硬件资源管理选项。例如: ```bash export CUDA_VISIBLE_DEVICES=0,1,2,3 ``` 此命令设定了可见的CUDA设备为前四个GPU单元,适用于多卡并行处理场景下的性能评估需求。 #### 修改配置文件 接着,在`blog_v0_2/configs/`目录下找到对应的实验配置文件。这些YAML格式的文件包含了模型架构定义、训练超参以及数据集路径等重要信息。针对不同规模的数据集或计算平台特性,适当调整如下关键字段可以优化测试效果: - `model_size`: 定义所使用的预训练模型大小(如7B表示Llama-7B) - `batch_size`: 设置每批次输入样本数量;较大批量有助于提高吞吐率但可能增加显存占用 - `precision`: 指定数值精度模式(FP32单精度浮点数 vs FP16半精度) ```yaml # Example of a configuration snippet from configs/ model: size: "7B" training: batch_size: 32 precision: "fp16" data: path_to_dataset: "/path/to/dataset/" ``` #### 执行基准测试脚本 最后一步是调用位于根目录中的Python脚本来启动实际的性能测量过程。一般情况下,会提供一个名为`run_benchmarks.py`的入口程序来简化操作步骤。通过传递不同的CLI参数组合,可以选择具体的评测指标集合及其可视化方式。 ```python import argparse if __name__ == "__main__": parser = argparse.ArgumentParser(description="Run SG-Lang Performance Benchmarks.") # Add arguments here based on the configurations needed args = parser.parse_args() main(args) ``` 上述代码片段展示了如何构建命令行解析器以接收外部传入的控制指令,进而实现灵活定制化的性能分析功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值