《视觉slam十四讲从理论到实践》第四讲习题自测解答

0x00 前言

《视觉slam十四讲从理论到实践》第四讲习题自测解析。
借助自身知识储备和搜索引擎后完成习题,仅供参考。
部分答案会觉得没有说明的必要就会略

0x01 前置知识

  李群的定义

  群(Group)是一种集合加上一种运算的代数结构。我们把集合记作 A A A,运算记作 ⋅ \cdot ,那么群可以记作 G = ( A , ⋅ ) G=(A,\cdot) G=(A,) 。群要求这个运算满足以下几个条件:

  1. 封闭性:   ∀ a 1 , a 2 ∈ A , a 1 ⋅ a 2 ∈ A . \forall a_1,a_2\in A,\quad a_1\cdot a_2\in A. a1,a2A,a1a2A.
  2. 结合律:   ∀ a 1 , a 2 , a 3 ∈ A , ( a 1 ⋅ a 2 ) ⋅ a 3 = a 1 ⋅ ( a 2 ⋅ a 3 ) . \forall a_1,a_2,a_3\in A,\quad (a_1\cdot a_2)\cdot a_3=a_1\cdot(a_2\cdot a_3). a1,a2,a3A,(a1a2)a3=a1(a2a3).
  3. 幺元:   ∃ a 0 ∈ A , s . t . ∀ a ∈ A , a 0 ⋅ a = a ⋅ a 0 = a . \exist a_0\in A,\quad s.t.\quad\forall a\in A,\quad a_0\cdot a=a\cdot a_0=a. a0A,s.t.aA,a0a=aa0=a.
  4. 逆:   ∀ a ∈ A , ∃ a − 1 ∈ A , s . t . a ⋅ a − 1 = a 0 . \forall a\in A,\quad\exist a^{-1}\in A,\quad s.t.\quad a\cdot a^{-1}=a_0. aA,a1A,s.t.aa1=a0.

  李代数的定义

  李代数由一个集合 V \mathbb{V} V 、一个数域 F \mathbb{F} F 和一个二元运算 [ , ] [,] [,] 组成。如果它们满足以下几个性质,则称 ( V , F , [ , ] ) (\mathbb{V},\mathbb{F},[,]) (V,F,[,]) 为一个李代数,记作 g g g

  1. 封闭性   ∀ X , Y ∈ V , [ X , Y ] ∈ V . \forall X,Y\in\mathbb{V},[X,Y]\in\mathbb{V}. X,YV,[X,Y]V.
  2. 双线性   ∀ X , Y , Z ∈ V , a , b ∈ F , 有 \forall X,Y,Z\in\mathbb{V},a,b\in\mathbb{F},有 X,Y,ZV,a,bF,

    [ a X + b Y , Z ] = a [ X , Z ] + b [ Y , Z ] , [ Z , a X + b Y ] = a [ Z , X ] + b [ Z , Y ] . [aX+bY,Z]=a[X,Z]+b[Y,Z],\qquad[Z,aX+bY]=a[Z,X]+b[Z,Y]. [aX+bY,Z]=a[X,Z]+b[Y,Z],[Z,aX+bY]=a[Z,X]+b[Z,Y].

  3. 自反性   ∀ X ∈ V , [ X , X ] = 0. \forall X\in\mathbb{V},[X,X]=0. XV,[X,X]=0.
  4. 雅可比等价   ∀ X , Y , Z ∈ V , [ X , [ Y , Z ] ] + [ Z , [ X , Y ] ] + [ Y , [ Z , X ] ] = 0. \forall X,Y,Z\in\mathbb{V},[X,[Y,Z]]+[Z,[X,Y]]+[Y,[Z,X]]=0. X,Y,ZV,[X,[Y,Z]]+[Z,[X,Y]]+[Y,[Z,X]]=0.

0x02 习题部分

1、验证 S O ( 3 ) 、 S E ( 3 ) 和 S i m ( 3 ) SO(3)、SE(3)和Sim(3) SO(3)SE(3)Sim(3)关于乘法成群。

  验证 S O ( 3 ) SO(3) SO(3)

S O ( 3 ) = { R ∈ R 3 × 3 ∣ R R T = I , d e t ( R ) = 1 } SO(3)=\left\{R\in\mathbb{R}^{3\times3}|RR^T=I,det(R)=1\right\} SO(3)={ RR3×3RRT=I,det(R)=1}

   封闭性

  从旋转矩阵的定义正交性入手,设 R = R 1 R 2 ∈ R 3 × 3 R=R_1R_2\in\mathbb{R}^{3\times3} R=R1R2R3×3,
R R T = R 1 R 2 ( R 1 R 2 ) T = R 1 R 2 R 2 T R 1 T = R 1 I R 1 T = I RR^T=R_1R_2(R_1R_2)^T=R_1R_2R_2^TR_1^T=R_1IR_1^T=I RRT=R1R2(R1R2)T=R1R2R2TR1T=R1IR1T=I
  所以 R = R 1 R 2 ∈ S O ( 3 ) R=R_1R_2\in SO(3) R=R1R2SO(3)

满足封闭性


   结合律

  由矩阵乘法规律可知,矩阵乘法满足结合律,即满足 ( R 1 ⋅ R 2 ) ⋅ R 3 = R 1 ⋅ ( R 2 ⋅ R 3 ) (R_1\cdot R_2)\cdot R_3=R_1\cdot (R_2\cdot R_3) (R1R2)R3=R1(R2R3)

满足结合律


   幺元

  存在 R = I , R=I, R=I, 使得 I R 1 = R 1 I = R 1 IR_1=R_1I=R_1 IR1=R1I=R1.

满足幺元


   逆

  设矩阵 R ∈ S O ( 3 ) R\in SO(3) RSO(3) ,由正交性可知, ∃ R − 1 = R T \exist R^{-1}=R^T R1=RT ,使得 R R − 1 = I . RR^{-1}=I. RR1=I.

满足逆


  验证 S E ( 3 ) SE(3) SE(3)

S E ( 3 ) = { T = [ R t 0 T 1 ] ∈ R 4 × 4 ∣ R ∈ S O ( 3 ) , t ∈ R 3 } SE(3)=\left\{T=\left[\begin{matrix}R&t\\0^T&1\end{matrix}\right]\in\mathbb{R}^{4\times4}|R\in SO(3),t\in\mathbb{R}^3\right\} SE(3)={ T=[R0Tt1]R4×4RSO(3),tR3}

   封闭性

  设 T 1 , T 2 ∈ S E ( 3 ) T_1,T_2\in SE(3) T1,T2SE(3),
T 1 T 2 = [ R 1 t 1 0 T 1 ] [ R 2 t 2 0 T 1 ] = [ R 1 R 2 R 1 t 2 + t 1 0 T 1 ] T_1T_2=\left[\begin{matrix}R_1&t_1\\0^T&1\end{matrix}\right] \left[\begin{matrix}R_2&t_2\\0^T&1\end{matrix}\right]= \left[\begin{matrix}R_1R_2&R_1t_2+t_1\\0^T&1\end{matrix}\right] T1T2=[R10Tt11][R20Tt21]=[R1R20TR1t2+t11]
  由 S O ( 3 ) SO(3) SO(3) 的封闭性可知, R 1 R 2 ∈ S O ( 3 ) R_1R_2\in SO(3) R1R2SO(3) ,由矩阵的运算规律可知 R 1 t 2 + t 1 ∈ R 3 R_1t_2+t_1\in\mathbb{R}^3 R1t2+t1R3
  所以 T 1 T 2 ∈ S E ( 3 ) T_1T_2\in SE(3) T1T2SE(3)

满足封闭性


   结合律

  由矩阵乘法规律可知,矩阵乘法满足结合律,即满足 ( T 1 ⋅ T 2 ) ⋅ T 3 = T 1 ⋅ ( T 2 ⋅ T 3 ) (T_1\cdot T_2)\cdot T_3=T_1\cdot (T_2\cdot T_3) (T1T2)T3=T1(T2T3)

满足结合律


   幺元

  存在 T = I , T=I, T=I, 使得 I T 1 = T 1 I = T 1 IT_1=T_1I=T_1 IT1=T1I=T1.

满足幺元


   逆

  设矩阵 T ∈ S E ( 3 ) T\in SE(3) TSE(3) ,易得 R ∈ S O ( 3 ) R\in SO(3) RSO(3) ,是一个满秩矩阵,所以 T T T 是一个满秩矩阵,所以 T T T 可逆, ∃    T − 1 \exist\;T^{-1} T1 ,使得 T T − 1 = I . TT^{-1}=I. TT1=I.

满足逆


  验证 S i m ( 3 ) Sim(3) Sim(3)


2、验证 ( R 3 , R , × ) (\mathbb{R}^3,\mathbb{R},\times) (R3,R,×)构成李代数。

 封闭性

 设 a ⃗ , b ⃗ ∈ R 3 \vec{a},\vec{b}\in\mathbb{R}^3 a ,b R3,
 根据叉积的定义:
a ⃗ × b ⃗ = ∣ i ⃗ j ⃗ k ⃗ a 1 a 2 a 3 b 1 b 2 b 3 ∣ = ( a 2 b 3 − a 3 b 2 ) i ⃗ + ( a 3 b 1 − a 1 b 3 ) j ⃗ + ( a 1 b 2 − a 2 b 1 ) k ⃗ = [ a 2 b 3 − a 3 b 2 a 3 b 1 − a 1 b 3 a 1 b 2 − a 2 b 1 ] ∈ R 3 (2.1) \vec{a}\times\vec{b}=\left|\begin{matrix} \vec{i}&\vec{j}&\vec{k}\\ a_1& a_2&a_3\\ b_1&b_2&b_3 \end{matrix}\right|=(a_2b_3-a_3b_2)\vec{i}+(a_3b_1-a_1b_3)\vec{j}+(a_1b_2-a_2b_1)\vec{k}=\left[\begin{matrix} a_2b_3-a_3b_2\\ a_3b_1-a_1b_3\\ a_1b_2-a_2b_1 \end{matrix}\right]\in\mathbb{R}^3\tag{2.1} a ×b =i a1b1j a2b2k a3b3=(a2b3a3b2)i +(a3b1a1b3)j +(a1b2a2b1)k =a2b3a3b2a3b1a1b3a1b2a2b1R3(2.1)
满足封闭性


 双线性

 设 a ⃗ , b ⃗ , c ⃗ ∈ R 3 , α , β ∈ R \vec{a},\vec{b},\vec{c}\in\mathbb{R}^3,\alpha,\beta\in\mathbb{R} a ,b ,c R3,α,βR,
[ a X + b Y , Z ] = ( α a ⃗ + β b ⃗ ) × c ⃗ = α a ⃗ × c ⃗ + β b ⃗ × c ⃗ ⋯ 分 配 律 = α ( a ⃗ × c ⃗ ) + β ( b ⃗ × c ⃗ ) ⋯ 常 数 系 数 完 全 可 以 提 出 来 = a [ X , Z ] + b [ Y , Z ] (2.2) \begin{aligned} &\quad[aX+bY,Z]=(\alpha\vec{a}+\beta\vec{b})\times\vec{c}\\ &=\alpha\vec{a}\times\vec{c}+\beta\vec{b}\times\vec{c}&\cdots&分配律\\ &=\alpha(\vec{a}\times\vec{c})+\beta(\vec{b}\times\vec{c})&\cdots&常数系数完全可以提出来\tag{2.2}\\ &=a[X,Z]+b[Y,Z] \end{aligned} [aX+bY,Z]=(αa +βb )×c =αa ×c +βb ×c =α(a ×c )+β(b ×c )=a[X,Z]+b[Y,Z](2.2)
 同理
[ Z , a X + b Y ] = α ( c ⃗ × a ⃗ ) + β ( c ⃗ × b ⃗ ) = a [ Z , X ] + b [ Z , Y ] [Z,aX+bY]=\alpha(\vec{c}\times\vec{a})+\beta(\vec{c}\times\vec{b})=a[Z,X]+b[Z,Y] [Z,aX+bY]=α(c ×a )+β(c ×b )=a[Z,X]+b[Z,Y]
满足双线性


 自反性

 设 a ⃗ ∈ R 3 \vec{a}\in\mathbb{R}^3 a R3
a ⃗ × a ⃗ = ∣ a ⃗ ∣ 2 sin ⁡ < a ⃗ , a ⃗ > = 0 (2.3) \vec{a}\times\vec{a}={\left|\vec{a}\right|}^2\sin{<\vec{a},\vec{a}>}=0\tag{2.3} a ×a =a 2sin<a ,a >=0(2.3)
满足自反性


 雅可比等价

 设 a ⃗ , b ⃗ , c ⃗ ∈ R 3 \vec{a},\vec{b},\vec{c}\in\mathbb{R}^3 a ,b ,c R3,
[ X , [ Y , Z ] ] + [ Z , [ X , Y ] ] + [ Y , [ Z , X ] ] = a ⃗ × ( b ⃗ × c ⃗ ) + c ⃗ × ( a ⃗ × b ⃗ ) + b ⃗ × ( c ⃗ × a ⃗ ) (2.4) [X,[Y,Z]]+[Z,[X,Y]]+[Y,[Z,X]]=\vec{a}\times(\vec{b}\times\vec{c})+\vec{c}\times(\vec{a}\times\vec{b})+\vec{b}\times(\vec{c}\times\vec{a})\tag{2.4} [X,[Y,Z]]+[Z,[X,Y]]+[Y,[Z,X]]=a ×(b ×c )+c ×(a ×b )+b ×(c ×a )(2.4)
 将 a ⃗ , b ⃗ , c ⃗ \vec{a},\vec{b},\vec{c} a ,b ,c 依次轮换得
b ⃗ × ( c ⃗ × a ⃗ ) + a ⃗ × ( b ⃗ × c ⃗ ) + c ⃗ × ( a ⃗ × b ⃗ ) (2.5) \vec{b}\times(\vec{c}\times\vec{a})+\vec{a}\times(\vec{b}\times\vec{c})+\vec{c}\times(\vec{a}\times\vec{b})\tag{2.5} b ×(c ×a )+a ×(b ×c )+c ×(a ×b )(2.5)
 易得式 ( 2.4 ) (2.4) (2.4)与式 ( 2.5 ) (2.5) (2.5)相等,所以可知 a ⃗ , b ⃗ , c ⃗ \vec{a},\vec{b},\vec{c} a ,b ,c 轮换等价。那么可令 b ⃗ = a ⃗ , c ⃗ = a ⃗ \vec{b}=\vec{a},\vec{c}=\vec{a} b =a ,c =a ,代入 ( 2.4 ) (2.4) (2.4)
3 a ⃗ × ( a ⃗ × a ⃗ ) = 0 ⋯ 自 反 性 (2.6) 3\vec{a}\times(\vec{a}\times\vec{a})=0\qquad\cdots自反性\tag{2.6} 3a ×(a ×a )=0(2.6)
满足雅可比等价
注:这样子验证可能不严谨,高中遗留下来的做题技巧



3、验证 s o ( 3 ) so(3) so(3) s e ( 3 ) se(3) se(3)满足李代数要求的性质。

  验证 s o ( 3 ) so(3) so(3)

Φ = ϕ ⃗ ∧ = [ 0 − ϕ ⃗ 3 ϕ ⃗ 2 ϕ ⃗ 3 0 − ϕ ⃗ 1 − ϕ ⃗ 2 ϕ ⃗ 1 0 ] \Phi={\vec\phi}^\wedge=\left[ \begin{matrix} 0&-\vec\phi_3&\vec\phi_2\\ \vec\phi_3&0&-\vec\phi_1\\ -\vec\phi_2&\vec\phi_1&0 \end{matrix}\right] Φ=ϕ =0ϕ 3ϕ 2ϕ 30ϕ 1ϕ 2ϕ 10
s o ( 3 ) = { ϕ ∈ R 3 , Φ = ϕ ∧ ∈ R 3 × 3 } so(3)=\left\{\phi\in\mathbb{R}^3,\Phi=\phi^\wedge\in\mathbb{R}^{3\times3}\right\} so(3)={ ϕR3,Φ=ϕR3×3}
[ ϕ ⃗ 1 , ϕ ⃗ 2 ] = ( Φ 1 Φ 2 − Φ 2 Φ 1 ) ∨ (3.1) [\vec\phi_1,\vec\phi_2]=(\Phi_1\Phi_2-\Phi_2\Phi_1)^\vee\tag{3.1} [ϕ 1,ϕ 2]=(Φ1Φ2Φ2Φ1)(3.1)

   封闭性

  设 ϕ ⃗ = [ x , y , z ] T ∈ R 3 \vec{\phi}=[x,y,z]^T\in\mathbb{R}^3 ϕ =[x,y,z]TR3,
[ ϕ ⃗ 1 , ϕ ⃗ 2 ] = ( Φ 1 Φ 2 − Φ 2 Φ 1 ) ∨ [\vec\phi_1,\vec\phi_2]=(\Phi_1\Phi_2-\Phi_2\Phi_1)^\vee [ϕ 1,ϕ 2]=(Φ1Φ2Φ2Φ1)
= ( [ 0 − z 1 y 1 z 1 0 − x 1 − y 1 x 1 0 ] [ 0 − z 2 y 2 z 2 0 − x 2 − y 2 x 2 0 ] − [ 0 − z 2 y 2 z 2 0 − x 2 − y 2 x 2 0 ] [ 0 − z 1 y 1 z 1 0 − x 1 − y 1 x 1 0 ] ) ∨ =\left(\left[\begin{matrix}0&-z_1&y_1\\ z_1&0&-x_1\\ -y_1&x_1&0\end{matrix}\right] \left[\begin{matrix} 0&-z_2&y_2\\ z_2&0&-x_2\\ -y_2&x_2&0\end{matrix}\right] - \left[\begin{matrix} 0&-z_2&y_2\\ z_2&0&-x_2\\ -y_2&x_2&0 \end{matrix}\right] \left[\begin{matrix} 0&-z_1&y_1\\ z_1&0&-x_1\\ -y_1&x_1&0 \end{matrix}\right] \right)^\vee =0z1y1z10x1y1x100z2y2z20x2y2x200z2y2z20x2y2x200z1y1z10x1y1x10
= ( [ − z 1 z 2 − y 1 y 2 x 2 y 1 x 2 z 1 x 1 y 2 − z 1 z 2 − x 1 x 2 y 2 z 1 x 1 z 2 y 1 z 2 − y 1 y 2 − x 1 x 2 ] − [ − z 1 z 2 − y 1 y 2 x 1 y 2 x 1 z 2 x 2 y 1 − z 1 z 2 − x 1 x 2 y 1 z 2 x 2 z 1 y 2 z 1 − y 1 y 2 − x 1 x 2 ] ) ∨ =\left(\left[\begin{matrix} -z_1z_2-y_1y_2&x_2y_1&x_2z_1\\ x_1y_2&-z_1z_2-x_1x_2&y_2z_1\\ x_1z_2&y_1z_2&-y_1y_2-x_1x_2 \end{matrix}\right]- \left[\begin{matrix} -z_1z_2-y_1y_2&x_1y_2&x_1z_2\\ x_2y_1&-z_1z_2-x_1x_2&y_1z_2\\ x_2z_1&y_2z_1&-y_1y_2-x_1x_2 \end{matrix}\right]\right)^{\vee} =z1z2y1y2x1y2x1z2x2y1z1z2x1x2y1z2x2z1y2z1y1y2x1x2z1z2y1y2x2y1x2z1x1y2z1z2x1x2y2z1x1z2y1z2y1y2x1x2

= ( [ 0 x 2 y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值