R语言迅速计算多基因评分(PRS)

Polygenic Risk Scores in R

最朴素的理解PRS:

GWAS分析结果中,有每个SNP的beta值、se值、P值,因为GWAS分析中将SNP变为0-1-2编码,所以这些显著的SNP的beta值,就可以用于预测。

比如:GWAS分析中,显著的SNP效应值为:

SNP1: 0.3
SNP2: 0.2
SNP3: -0.1

对于target data(目标群体),检测了3个个体,3个SNP的分型分别为:

ID1 0 0 1
ID2 1 0 2
ID3 2 2 1

那么个体1的多基因评分为:00.3 + 00.2 + 1*-0.1 = -0.1

个体2的多基因评分为:0.3 + 0 + -0.1 = 0.2

个体3的多基因评分为:0.6 + 0.4 + -0.1 = 0.9

用数学公式表示:

  • beta是效应值
  • G是0-1-2的编码
  • m是m个SNP

实际项目的PRS计算

实际中的项目,考虑的因素比较多,比如:

  • 数据质控
  • 群体结构
  • LD值(clumping)
  • beta矫正值
  • 通过P值筛选最优组合

相关软件实现PRS分析

在这里插入图片描述

  • plink
  • biqsnpr,一个R包
  • PRSice,应用最广泛,通过C+T的策略
  • LDpred,通过贝叶斯收缩的模型
  • PRS-CS
  • JAMPred
  • Lassosum

之前写过PRS的操作流程,可以作为参考:

多基因风险预测模型1–先立Flag

多基因风险预测模型2–相关概念和软件

不会安装使用PRSice-2软件就太不讲究了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值