windows10下安装Mujoco 详细安装教程 + 附安装包

windows10下安装Mujoco 详细安装教程

MuJoCo 最初由美国华盛顿大学运动控制实验室主任、神经科学家 Emo Todorov 开发,于2015年通过创业公司 Roboti LLC , 被打造成了商业产品。2021年10月份后已开源,MuJoCo 的所有权从最初的 Roboti LLC 转为现在的 DeepMind ,但 Roboti LLC依然保留了原先旧版本 MuJoCo 的官网:http://roboti.us/index.html


该软件可用于强化学习 (Reinforcement Learning,RL) 算法的对比实验,机器人模型的仿真

完整安装包下载:https://download.csdn.net/download/yohnyang/86504311


另:关于机器人控制相关算法可以详见我的专栏:https://blog.csdn.net/yohnyang/category_11950508.html

1. Visual Studio Build Tools的安装

在这里插入图片描述
在这里插入图片描述

2. mujoco安装

建立如下文件夹,并将文件解压、txt存放到对应位置
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
添加环境变量

变量名:MUJOCO_PY_MJPRO_PATH
变量值:C:\Users\LENOVO-PC\.mujoco\mjpro150

变量名:MUJOCO_PY_MJKEY_PATH
变量值:C:\Users\LENOVO-PC\.mujoco\mjpro150\bin\mjkey.txt

在这里插入图片描述
再在系统变量Path中添加如下:

C:\Users\Administrator\.mujoco\mjpro150\bin
C:\Users\Administrator\.mujoco\mjpro150
C:\Users\Administrator\.mujoco

命令行cmd窗口打开测试mjpro仿真环境

>>>cd .mujoco\mjpro150\bin
>>>simulate.exe ../model/humanoid.xml
***
<<< MuJoCo Pro library version 1.50

在这里插入图片描述

3. mujoco-py安装

命令行窗口:

conda info --envs  #查看安装了哪些虚拟环境
conda create -n mujoco_py38 python=3.8.0  #新建虚拟环境

下载mujoco-py包解压到该目录并修改名字为mujocopy50:
在这里插入图片描述

cd C:\Users\Administrator\.mujoco\mujocopy150   #进入目录
conda activate mujoco_py38    #激活虚拟环境
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -r requirements.txt  #从清华源下载并安装相关依赖
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -r requirements.dev.txt  #从清华源下载并安装相关依赖
python setup.py install #安装mujoco-py

安装完成后使用Pycharm进行demo测试,测试代码如下:

import os
import mujoco_py
mj_path, _ = mujoco_py.utils.discover_mujoco()
xml_path = os.path.join(mj_path, 'model', 'humanoid.xml')
model = mujoco_py.load_model_from_path(xml_path)
sim = mujoco_py.MjSim(model)
print(sim.data.qpos)
sim.step()
print(sim.data.qpos)
  • error:文件名或者扩展名过长:
    在这里插入图片描述
  • 解决:将mujocopy150文件夹中的mujoco复制到虚拟环境下的.\Lib\site-packages目录下
    在这里插入图片描述
    并添加如下代码:
import os
os.add_dll_directory("C:\\Users\\Administrator\\.mujoco\\mjpro150\\bin")
os.add_dll_directory("C:\\Users\\Administrator\\.mujoco\\mujocopy150")

import mujoco_py
  • 运行结果如下:
    在这里插入图片描述

4. gym安装

命令行窗口激活环境,安装gym:

conda activate py37
pip install gym[mujoco]

pycharm测试如下demo:

import gym
env = gym.make('HalfCheetah-v4')  #v4表示版本
env.reset()
done = False
while not done:
    _, _, done, _ = env.step(env.action_space.sample())
    env.render()
env.close()

在这里插入图片描述

5. urdf 格式转 xml进行仿真

  • urdf 文件中做出如下修改:
<robot name=" ">
<!--放到此处--!> 
  <mujoco>
        <compiler 
        meshdir="/home/lee/catkin_ws/src/sys/meshes/" 
        balanceinertia="true" 
        discardvisual="false" />
  </mujoco>

找到mujoco中的exe路径,将想要转换的urdf放到此处。。
在这里插入图片描述

#打开
cd .mujoco\mjpro150\bin

#转换,不同版本命令可能不太一样,需要注意
compile.exe ./robot.urdf ./robot.xml

#仿真
simulate.exe robot.xml       

参考:
1.【Mujoco】在Win10下的安装
2. Win 10、Win 11 安装 MuJoCo 及 mujoco-py 教程

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明月醉窗台

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值