清华大学出版社:《自动驾驶系统开发》
本书写作目的:
在自动驾驶发展方兴未艾时,越来越多的公司、工程师、科学家和学生进入或打算 进入这个赛道。笔者希望给读者介绍一下当今自动驾驶前沿的技术理论。
本书主要包括以下内容。
简要介绍自动驾驶的概论,包括自动驾驶的分级方法、两种不同的开发结构(模块化和端到端)、自动驾驶的应用场景分类和数据闭环概念等。
在展开前沿技术介绍之前,铺垫了涉及的基础理论,如计算机视觉、图像处理、优化理论、机器学习和深度学习等。
在开始本书的重点之前,读者需要对自动驾驶的软硬件平台有初步了解, 硬件部分有传感器(摄像头、激光雷达、毫米波雷达、超声波雷达和车联网等)、计算平 台、线控底盘和电子电气架构等,软件部分有软件架构(如 AUTOSAR 和 aSPICE)、软件开发 V-模型和操作系统。
本书真正的重头戏是第5~9章,即感知、高清地图、定位、规划和控制。感知部分涉及了多种传感器标定、单目测距、深度图估计、3D 障碍物检测和跟踪、传感 器融合(数据级和任务级)、车道线检测、交通标志检测识别、交通信号灯检测识 别、双目视觉、驾驶区域分割、人体姿态估计、驾驶人监控系统和新一代 BEV 感 知框架等;高清地图部分介绍了高清地图的结构、语义地图的构建、基于车道线地图和基于深度学习的 SLAM 等;定位部分和高清地图部分不可分,包括基于 车道线地图的定位、基于激光雷达的地图定位、传感器融合的混合式定位以及 基于深度学习的定位方法;规划部分涉及基本的规划理论、对驾驶行为的建模 预测、行人行为的建模预测和基于深度学习的模仿学习等;控制方法相对来说 比较传统,但是在回顾经典的车辆运动学和动力学模型、控制理论(如 PID 和 MPC)之 外 , 也 讨 论 了 基 于 深 度 学 习 的 控 制 理 论 。
本书也讨论了自动驾驶研发重要的一个环节:模拟仿真,介绍了传感器仿真,交 通模拟模型、汽车/行人仿真模型、可视化平台以及数字孪生和安全-紧要场景数 据生成等。
作为自动驾驶不可分的一部分是安全理论,本书涉及著名的 NHTSA 的安全要 素 、国 际 标 准 化 组 织 功 能 安 全 标 准 ISO 26262 和 预 期 功 能 安 全 标 准 ISO 21448(SOTIF)、网 络 安 全 、自 动 驾 驶 的 安 全 隐 患 和 解 决 方 法 以 及 系 统 的 验 证 和 确 认(V & V )技 术 ,还 附 加 了 Intel M obileye 的 责 任 敏 感 性 安 全 模 型 。
目前自动驾驶技术最接近商业落地的一个场景是自动自主泊车。本书专门具体 讨论了泊车系统的视觉系统标定、停车位检测、运动规划、传感器融合(超声波和 环视摄像系统)和自主泊车系统,特别讨论了停车场的地图制作和基于深度学习 的泊车规划方法。
车联网是自动驾驶的一个重要辅助,可以看作传感器的“延伸”。本书还讨论了 车联网技术的应用,如车-路协同、车辆协同感知和车辆编队的规划及控制等。
针对当前比较热门的两种技术,本书也单独给予分析讨论。一是神经渲染, 其中包 括 神 经 辐 射 场 模 型 (NeRF)的 基 础 、算 法 加 速 、泛 化 和 扩 展 技 术 ;二 是 扩 散 模 型, 一种性能最优的内容生成模型, 介绍其基础理论、改进方法以及在图像合成、图像-图像翻译和文本-图像生成等方面的应用。
本书读者需要有一定基础,如具备在计算机视觉和机器学习(甚至深度学习)方面 的理论基础和实践经验。本书并不是给初学者一个了解自动驾驶的窗口,而是真正深 入地进入自动驾驶面临的难题之中,给读者一个全面的认识。本书提供了很多自动驾 驶前沿技术一手的资料,希望能够启发和触动自动驾驶第一线的开发人员,在遇到问题 和困难时开阔思路并发现新的方法。
为便于读者阅读和理解,将书中部分彩图以在线图片的形式呈现,请扫描章名旁的 二维码查看。
本 书 第 1 、2 、10 、11 章 由 黄 浴 和 杨 子 江 共 同 编 写 , 第 3 ~ 9 章 和 第 12 ~ 15 章 由 黄 浴 编 写。本书在编写过程中得到了西安深信科创公司的大力支持,在此表示衷心的感谢。
由于编者水平有限,书中不当之处在所难免,欢迎广大同行和读者批评指正。