无人驾驶感知篇之融合(十)

        昨天上海新增两万多,久高不下,着实让人揪心,家里也没粮了,只能喝大米粥了!之前介绍了人工智能主要有人工智能类则主要包括模糊逻辑理论、神经网络、粗集理论、专家系统等。上一篇主要讲述了模糊逻辑理论,今天主要写写神经网络。可能网上的神经网络博客、文章比较多,大家一搜也能搜一堆,可能写的也有点重复,莫要见怪哈!目前在无人驾驶方面比较常用的就是卷积神经网络,这一节重点说说卷积神经网络。

1.卷积神经网络的由来

      卷积神经网络(CNN) 最初是受到生物视觉系 统的神经机制启发,针对二维识别设计的一种生物物理模型,在平移情况下具有不变性,在缩放和倾斜 情况下也具有一定的不变性,具有局部连接、权值共 享的特点.CNN 的前身是神经认知机模型 ,利用神经认知机的思想, LeCun 等提出 CNN 的现代雏形,LeNet. Krizhevsky 等提出 AlexNet 网络,实现准确的图像分类。

2,卷积神经网络原理

        CNN 结构有很多变体, 但其基本结构大多包 括输入层、卷积层、池化层、全连接层及输出层。举个例子吧,例如下图, 该结构共包 含 22 层, 包括 1 层输入层, 13 层卷积层, 6 层池化层, 1 层平坦层和 1 层全连接层 (即输出层). 处理后的融合图像作为网络的输入, 经过卷积核大小为 3 × 3, 步长为 1 的第一层卷积层后得到 32 个大小为 32 × 32 的特征图; 接着进入池化层, 采用最大池化, 池化核尺寸为 2 × 2, 输出特 征图尺寸减半, 即此时特征图大小为 16 × 16, 特 征图数量仍为 32 个; 之后经过 5 次相同的卷积层 和池化层的交替结构后, 得到 64 个大小为 1 × 1 的特征图; 再经过 7 层卷积核大小为 3 × 3, 步长 为 1 的卷积层, 1 层平坦层及 1 层包含 6 个神经元 的全连接层, 最终输出长度为 6 的一维数组, 对应 4—9 阶 Zernike 多项式系数。

 3.神经网络的几种融合方法

      按照融合的前后深度特点可以分为:早期融合、晚期融合、单层融合、深度融合、捷径融合。依次对应下图,不一一叙述了,大家大概了解一下即可。

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值