在之前的文章中,我和大家分享了撰写电商销售分析报告的实操步骤。后台收到了小伙伴想要了解更多在电商销售中针对具体问题和实际应用场景的留言。所以今天这篇文章,我们将继续围绕电商销售的主题,开启数据分析之旅。
在电商行业,销售数据是驱动决策的核心。《2024中国电商运营健康度白皮书》显示,在没有建立数据决策体系的企业中,72%的营销预算消耗在无效投放、用户误判和策略摇摆上。现在流量成本越来越高,无论是大平台还是中小卖家,想要在激烈的电商市场竞争中脱颖而出,必须依靠数据来优化销售策略。
Q:投入的流量费用翻倍了,为什么转化率反而跌破了警戒线?
A:流量池≠用户池,如果不对人群质量进行判断,花高价获得的流量可能只是没有实际价值的虚假数据。
Q:爆款产品月销量过万,季度盘点时为何还在亏钱?
A:只盯着前台显示的 GMV,却没算清退货率、仓储损耗以及流量成本等综合成本,这些因素正在不断削减利润。
Q:投入资金对会员体系进行升级,次日留存率为何不升反降?
A:用户分层管理还处于比较初级的阶段,不同生命周期的客户享受同样的权益,这样高净值用户自然就不愿意继续留下来了。
今天,我就从电商销售中存在的三大关键问题出发,运用「流量 - 转化 - 价值」三维透视法+「人 - 货 - 场」数据罗盘,为你指出从数据混乱的难题走向精准决策的有效路径,用案例手把手教你从数据中挖掘增长机会。
一、电商销售面临的问题
电商行业蓬勃发展,但也面临着许多问题,给电商销售的持续发展带来不小的挑战。下面是我总结的电商行业销售面临的四大问题:
1.销售额增长但利润下降
不少电商企业会遇到销售额上升、利润却下滑的情况,这经常是由于对成本控制的忽视,或是过度依赖低价促销手段。实际上,销售额并不等同于利润。在电商运营中,很多成本因素会影响利润,如采购成本、营销费用、物流支出、售后服务成本等,如果只关注销售额增长,而不对这些成本进行有效管理,就可能掉入利润陷阱。
2.流量获取成本高
电商市场竞争不断加剧,流量获取成本持续上升。寻找高质量且低成本的流量来源,成为电商运营的关键挑战。消费者的注意力被众多平台和商家分散,获取他们的关注变得困难,很多电商企业就投入更多的资源用于引流,如付费广告投放、社交媒体推广等,于是流量获取成本随之增加。
3.客户留存率低
电商行业普遍存在客户留存率低的问题。行业数据显示,拉新客户的成本约为留存老客户成本的 5 倍。所以,提升复购率,成为电商企业提升长期利润的关键所在。客户留存率低,意味着企业需要不断投入资源去开发新客户,而新客户的转化效率往往不如老客户,这在一定程度上限制了企业的盈利能力和可持续发展。
4.库存管理不善
库存积压会占用企业大量资金,增加仓储成本,还可能面临商品贬值风险;而断货则会导致客户流失,影响企业声誉。所以需要通过科学的数据分析,精准预测市场需求,合理安排库存。
这套电商销售必备的《E数通电商数字化分析方案》分享给大家,内含电商运营数字化转型的背景、痛点以及数据底层建设的路径等干货内容,建议想系统了解电商销售分析的先从电商基本知识准备起来!点击下方卡片免费领取:《帆软E数通电商数字化分析方案》 - 帆软数字化资料中心帆软重磅推出《帆软E数通电商数字化分析方案》,通过行业产品E数通,满足企业电商数据获取、整合、应用的全链路需求,让企业精细化电商运营更简单。https://s.fanruan.com/snqhz
二、电商销售分析怎么做?
面对上述电商销售过程中存在的种种难题,针对性的电商销售分析就成为了破局的关键。接下来,我就细细跟大家聊聊电商销售分析究竟该如何开展。
1.销售状况分析
销售状况分析是电商运营的基础工作,其核心在于拆解销售额结构并计算真实利润。
(1)拆解销售额结构:运用 “总 - 分” 的方式,将销售额从不同维度进行拆解,像平台、店铺、品类等维度。通过分析不同平台(如淘宝、京东、拼多多等)的销售额占比情况,能够精准找出主要的销售贡献渠道。这种分析有助于企业明确各平台的运营重点,合理分配资源,提高运营效率。
(2)计算真实利润:要清楚销售额并非等同于利润,必须充分考虑各类成本因素,通过精细化地分摊售后成本以及平台成本等其他相关成本,更为准确地计算出利润,为定价策略、成本控制等决策提供依据。
2.商品成分分析
商品作为电商业务的核心,分析商品表现能够优化产品结构。
(1)波士顿矩阵模型:借助市场增长率和市场份额这两个关键指标,将商品划分为四类:明星产品、金牛产品、问题产品和瘦狗产品。针对不同类型的商品,需要制定差异化的推广和优化策略。明星产品具有高市场增长率和高市场份额,金牛产品市场增长率低但市场份额高,问题产品市场增长率高但市场份额低,瘦狗产品市场增长率和市场份额均较低。
(2)库存周转率与动销率:库存周转率用于衡量商品从入库到售出的速度,而动销率则用于衡量商品的活跃程度。通过这两个指标,可以识别出滞销商品,从而对库存管理进行优化。
3.客户行为分析
了解客户行为才能制定精准营销策略,这也是电商销售分析的一个重要环节。
(1)建立RFM 模型:依据客户的最近购买时间(Recency)、购买频率(Frequency)和购买金额(Monetary)这三个维度,将客户划分为高价值、中价值和低价值群体。针对不同价值群体,制定个性化的营销策略。
(2)用户画像分析:通过分析客户的年龄、性别、职业、兴趣等特征,构建用户画像,优化产品和营销策略。
4.隐藏行为挖掘
通过挖掘隐藏行为,能够发现潜在的销售机会。
(1)关联规则挖掘:通过对客户购买记录进行深入分析,找出商品之间的关联关系。基于关联关系,企业可以通过捆绑销售等方式,提高客单价。这种销售策略不仅可以增加销售额,还能提升客户的购物便利性和满意度。
(2)漏斗分析:通过对销售流程中的转化率进行分析,找出其中的瓶颈环节。通过优化存在问题的环节,可以提高整体转化率,进而提升电商销售业绩。
三、案例分享与实战指南
深入了解了电商销售分析的思路和方法后,那么在实际的电商运营环境中,这些分析方法是如何发挥作用的呢?接下来,通过找我咨询的一家电商平台具体的销售分析报告,带大家更直观地感受和掌握电商销售分析在提升销售业绩、优化运营策略方面的强大作用。
这张报告里的分析看板都是用数据分析工具FineBI搭建的,它可以帮助我们更直观地查看电商销售数据和分析结果,通过简单的拖拉拽操作就能生成好看易懂的仪表板,在提效方面非常给力。FineBI的链接我就放在下面了,有需要的可以自行下载使用:帆软通行证登录
1.分析思路
(1)销售情况分析:月销售额变化趋势相对稳定,无大幅波动,11月为销售爆发期。销售额中折扣所占比例清晰呈现,可据此分析折扣策略对销售的影响。
(2)商品品类分析:电子产品在平台销售品类中占比最高,接近40%;男性服装品类销售额占比最低。男性服装退货率最高,达25%,且退货金额占比超15%。商品品类的销售额TOP10展示了各品类具体销售数据及占比情况。
(3)客户行为分析:单月交易额100w以上的大客户交易及复购情况有详细数据呈现,多数客户偏好某一种支付方式。客户交易状态笔数占比能反映出不同交易状态(如完成、取消、退款等)的比例。
(4)隐藏行为挖掘(支付行为分析):不同支付方式的订单状态数据表明,部分支付方式虽然便捷,但失败率较高,像bankalfalah_payex、mcbpay等。
2.实战指南
(1)销售策略方面:可以重点关注11月销售高峰,提前规划促销活动。同时,合理制定折扣策略,避免过度依赖折扣影响利润。
(2)商品管理方面:对于电子产品这类畅销品类,加大资源投入;针对男性服装退货率高的问题,需从产品质量、尺码准确性、描述相符度等方面进行优化。
(3)客户运营方面:重视大客户的维护,提高其忠诚度。根据客户支付偏好,优化支付渠道,同时针对支付失败率高的方式,及时排查问题并解决,提升支付体验。
(4)整体运营优化:通过对各方面数据的分析,全面了解电商平台运营状况,精准定位问题,从销售、商品、客户等多维度制定改进措施,提升平台的运营效率和销售业绩。
四、总结
电商销售分析的核心在于将数据转化为可落地的商业决策。流量质量、成本核算、用户分层三大关键问题的解决,要依托销售状况分析、商品成分分析、客户行为分析和隐藏行为挖掘的深度结合。通过拆解销售额结构、优化商品生命周期管理、精准识别客户价值层级,企业能够系统性诊断电商运营健康度,避开利润陷阱与资源浪费。用数据驱动销售链路优化,才能在存量竞争中实现可持续增长。
如果想做好实操,我也送给大家一份《电商数据应用全流程建设方案》,各个业务场景的电商销售分析其实都差不多,看懂这个再举一反三就够用了:跨境电商数据应用建设方案 - 帆软数字化资料中心