基于深度学习的土壤温湿度预测相关技术研究与实现【附代码】

(1)多通道门控循环单元的土壤温度预测模型

  • 在气象站稀缺地区,相关气象数据难以获取,这使得循环神经网络中长时间序列解释变量的自相关性降低。为解决这一问题,提出基于多通道门控循环单元的土壤温度预测模型。
  • 首先,以门控循环单元(GRU)为基础模块,提取解释变量短期模式特征。这是因为 GRU 能够有效地处理时间序列数据,捕捉短期的动态变化。
  • 其次,为避免较长期解释变量在信息传递过程中引起的模型误差,通过逐渐减小每个 GRU 模型时间步长的方式定义多个辅助网络。这样可以更好地捕获解释变量较长期模式的特征,提高模型对长期趋势的把握能力。
  • 最后,将不同通道捕获的不同时期土壤温度特征相融合。通过融合不同时期的特征,可以增强解释变量的自相关性,使模型能够更准确地建立土壤温度预测值与较长期解释变量之间的变化关系。实验结果表明,该方法在气象信息不易获取时,能有效提高土壤温度预测任务的准确率。

(2)基于四元组损失函数的土壤温度预测模型

  • 传统循环网络模型在预测土壤温度时存在一些问题。直接将解释变量作为输入,并采用均方误差等常用损失函数训练模型,会导致预测模型无法有效提取土壤温度特征,预测结果不具备物理一致性。
  • 为解决这一问题,提出基于四元组损失函数的土壤温度预测模型。该方法将传统损失函数与土壤温度特征之间的距离度量学习相结合,指导预测模型进行训练。
  • 具体来说,将土壤温度数据进行聚类,划分成不同区间并采用不同标签进行区分。通过拉近相同区间内土壤温度特征的距离,推远不同区间土壤温度特征的距离,避免传统循环神经网络模型预测结果不具备物理一致性。实验结果表明,该方法在处理多个解释变量的土壤温度预测任务中具有良好的预测性能。

(3)基于编码器 - 解码器长短期记忆网络的土壤湿度预测模型

  • 相比于土壤温度的预测,土壤湿度受土壤性质、降水和植被等多种因素影响,具有更高的异质性。同时,预测尺度增加会导致未来信息不确定性增强。
  • 为此,提出基于编码器 - 解码器长短期记忆网络的土壤湿度预测模型。编码器将长短期记忆网络(LSTM)作为基础网络,用于编码预测尺度内的特征,增强模型特征提取能力。
  • 通过解码未来信息,并使预测尺度内多个土壤湿度参与损失函数梯度的计算,可以改善未来信息不确定性带来的误差。
  • 将解释变量与解码器的解码信息结合,能够纠正编码器 - 解码器 LSTM 模型的计算偏差。实验结果表明,该方法通过改善未来信息的不确定性,提高了土壤湿度的预测精度。

(4)融合迁移学习的土壤湿度预测时空模型

  • 在预测 SMAP 产品的土壤湿度时,由于数据总量过少,易使深度学习模型出现欠拟合问题。
  • 为解决这一问题,提出融合迁移学习的土壤湿度预测时空模型。该方法利用三维卷积层提取土壤湿度的空间特征,利用 LSTM 模型提取其时间特征,改善传统深度学习模型的预测精度。
  • 采用迁移学习策略,利用具有物理意义的 ERA5 - Land 数据集土壤湿度指导深度学习模型的参数初始化。这样可以避免预测模型出现过拟合,提高模型的泛化能力。实验结果表明,该方法能够有效地提取土壤湿度的时空特征,经过 ERA5 - Land 数据集土壤湿度指导深度学习模型的参数初始化后,改善了深度学习模型预
### 使用深度学习模型进行天气预报的方法 #### 方法概述 深度学习模型在天气预报中的应用主要集中在以下几个方面: - **数据预处理**:将原始气象数据转换成适合输入给深度学习算法的形式。这一步骤通常涉及特征提取和降维操作,目的是减少冗余信息并突出有用的信息[^3]。 - **模式识别**:利用大量历史气象记录作为训练样本,使模型学会识别不同类型的天气现象及其演变规律。这一过程中,卷积神经网络(CNNs)常被用来捕捉空间上的关联性;循环神经网络(RNNs),尤其是长短时记忆(LSTM)单元,则擅长于时间序列数据分析,有助于提高短期至中期天气预报精度[^2]。 - **结果可视化**:为了让专业人士更容易理解和接受预测成果,有必要开发相应的工具来呈现这些复杂的数据。比如绘制温度分布图、降雨量变化趋势线等直观形式可以帮助用户快速获取所需情报[^1]。 #### 实际案例分析 一个典型的例子是在极端天气事件预警系统的构建上采用了上述提到的技术组合。具体来说,研究人员先是对多年累积下来的地面观测站资料进行了清洗整理,并从中挑选出最具代表性的变量组合作为输入特征向量。接着引入了基于LSTM架构的时间序列预测模块负责对未来几天内的气温波动做出估计。此同时,还特别设计了一套针对强降水过程监测机制——它不仅依赖于常规的大气物理参数,还会综合考虑地形地貌因素的影响程度。最终得到的结果会被自动转化为易于解读的地图样式界面供决策者参考使用。 ```python import numpy as np from keras.models import Sequential from keras.layers import LSTM, Dense def create_lstm_model(input_shape): model = Sequential() model.add(LSTM(50, activation='relu', input_shape=input_shape)) model.add(Dense(1)) model.compile(optimizer='adam', loss='mse') return model # 假设X_train是形状为(n_samples, n_timesteps, n_features)的三维数组, # y_train是一维目标值列表。 model = create_lstm_model((n_timesteps, n_features)) history = model.fit(X_train, y_train, epochs=200, batch_size=72, validation_split=0.2) predictions = model.predict(X_test) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值