📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建
✨ 专业领域:
金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用
💡 擅长工具:
Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导
📚 内容:
金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
✅ 具体问题可以私信或查看文章底部二维码
✅ 感恩科研路上每一位志同道合的伙伴!
(1)金融时间序列数据具有非线性、复杂性、自相似性以及时变性等特性,这使得对其的研究充满挑战。在大数据与人工智能技术快速发展的背景下,挖掘时序数据中隐含的信息成为各行业进行决策的重要一步。本文主要研究了典型的金融时间序列,并利用网络大数据作为外源数据,通过深度学习方法对金融时间序列的预测及相关性分析进行了深入探讨。
首先,本文应用多重分形去趋势交叉相关性分析(Multi-fractal Detrended Cross-Correlation Analysis, MF-DCCA)方法,分析了百度指数与人民币汇率之间的交叉相关性以及这种相关性在疫情前后的变化。研究表明,人民币汇率与百度指数之间存在较强的负向长程交叉相关性,这意味着公众对人民币汇率的关注度越高,人民币汇率反而可能下降。此外,这种关系在疫情期间表现得相对稳定,说明即使在外部环境发生重大变化时,百度指数仍然可以作为人民币汇率的一个有效预测指标。
为了进一步验证百度指数对人民币汇率的预测能力,本文将百度指数作为衡量公众对人民币汇率网络关注度的潜在指标,并将其纳入深度学习模型中。具体而言,结合鲸鱼优化算法(Whale Optimization Algorithm, WOA)、季节趋势分解(Seasonal-Trend Decomposition Procedure Based on Losses, STL)算法和长短期记忆网络(Long Short Term Memory, LSTM),构建了一个带优化的分解集成深度学习模型WOA-STL-LSTM。实验结果表明,该模型在人民币汇率预测方面比传统模型表现更好,不仅提高了预测精度,还增强了模型的鲁棒性和泛化能力。
(2)除了人民币汇率的预测,本文还研究了西德克萨斯(West Texas Intermediate, WTI)原油期货价格的预测。在这部分研究中,谷歌趋势被用作WTI原油期货价格的潜在指标。通过LSTM模型对WTI下一个交易日的价格进行预测,并应用复杂性分析理论来解释谷歌趋势对WTI预测的作用。
具体来说,本文使用Hurst指数、分形维数和Lyapunov指数来研究时序数据的自相似性和复杂性。Hurst指数用于评估时间序列的长期依赖性,分形维数用于描述时间序列的复杂程度ÿ