📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建
✨ 专业领域:
金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用
💡 擅长工具:
Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导
📚 内容:
金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
✅ 具体问题可以私信或查看文章底部二维码
✅ 感恩科研路上每一位志同道合的伙伴!
(1)账户画像构建与特征提取
在区块链金融交易行为分析中,构建账户画像是理解账户行为模式的关键步骤。账户画像的构建基于从以太坊区块链中提取的交易行为数据,包括转账交易、创建合约交易和调用合约交易等。通过对这些交易行为的深入分析,可以提取出账户的手工特征,如交易频率、交易金额、交易对手数量等
。此外,还可以通过级联特征提取方法,挖掘账户与其邻居账户在交易行为中的潜在关系,从而丰富账户画像的行为特征。这些特征不仅有助于理解账户的正常行为模式,也为异常账户检测提供了基础。
(2)中心度算法与账户画像的重要性描述
为了更准确地描述账户在区块链交易网络中的重要性,本文提出了一种结合交易时间和交易金额信息的中心度在线测量算法——Time Adaptive Weighted Katz Centrality(Ada-Katz Centrality)。该算法能够动态地根据交易的时间和金额调整账户的中心度,从而更准确地反映账户在交易网络中的影响力。此外,结合Time Adaptive Sketch数据结构进行空间存储优化,可以有效地降低存储成本,提高算法的实用性。实验结果表明,该中心度算法在以太坊交易网络中具有较好的适用性,并且能够高效地进行空间存储。
(3)动态图嵌入算法与深度账户画像
为了进一步挖掘交易网络的空间结构信息,本文提出了一种结合交易时间信息和交易金额信息的动态图嵌入算法——Weighted Stream Walk。该算法通过模拟随机游走过程,使得交易频繁且金额较大的账户在低维空间中的距离更近,即相似度更高,从而构建出深度账户画像。实验结果表明,这种深度账户画像能够有效地识别以太坊交易网络中的异常账户,同时,结合手工特征和级联特征可以进一步提升账户特征的质量。
账户ID | 交易频率 | 交易金额(ETH) | 交易对手数量 | Ada-Katz Centrality | 异常得分 |
---|---|---|---|---|---|
1 | 120 | 500 | 30 | 0.85 | 0.6 |
2 | 80 | 300 | 20 | 0.75 | 0.4 |
3 | 200 | 800 | 50 | 0.90 | 0.9 |
4 | 150 | 600 | 40 | 0.80 | 0.7 |
5 | 100 | 400 | 25 | 0.70 | 0.5 |
% 网络的邻接矩阵A
A = [0 1 0 0 0; 1 0 1 0 0; 0 1 0 1 0; 0 0 1 0 1; 0 0 0 1 0];
% 计算Ada-Katz Centrality
alpha = 0.0005; % Katz参数
beta = 0.00005; % 时间衰减参数
max_iter = 100; % 最大迭代次数
tolerance = 1e-6; % 收敛容忍度
N = size(A, 1);
I = speye(N); % 单位矩阵
L = diag(sum(A, 2)) - A; % 拉普拉斯矩阵
b = ones(N, 1); % 初始化向量
% 计算中心度
for iter = 1:max_iter
b_new = alpha * A * b + beta * b;
if norm(b_new - b, 'fro') < tolerance
break;
end
b = b_new;
end
ada_katz_centrality = b;