基于区块链技术的平台用户账户画像与异常检测研究【附数据】

📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建

✨ 专业领域:

金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用


💡 擅长工具:

Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导


📚 内容:

金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
 

具体问题可以私信或查看文章底部二维码

✅ 感恩科研路上每一位志同道合的伙伴!

(1)账户画像构建与特征提取

在区块链金融交易行为分析中,构建账户画像是理解账户行为模式的关键步骤。账户画像的构建基于从以太坊区块链中提取的交易行为数据,包括转账交易、创建合约交易和调用合约交易等。通过对这些交易行为的深入分析,可以提取出账户的手工特征,如交易频率、交易金额、交易对手数量等

。此外,还可以通过级联特征提取方法,挖掘账户与其邻居账户在交易行为中的潜在关系,从而丰富账户画像的行为特征。这些特征不仅有助于理解账户的正常行为模式,也为异常账户检测提供了基础。

(2)中心度算法与账户画像的重要性描述

为了更准确地描述账户在区块链交易网络中的重要性,本文提出了一种结合交易时间和交易金额信息的中心度在线测量算法——Time Adaptive Weighted Katz Centrality(Ada-Katz Centrality)。该算法能够动态地根据交易的时间和金额调整账户的中心度,从而更准确地反映账户在交易网络中的影响力。此外,结合Time Adaptive Sketch数据结构进行空间存储优化,可以有效地降低存储成本,提高算法的实用性。实验结果表明,该中心度算法在以太坊交易网络中具有较好的适用性,并且能够高效地进行空间存储。

(3)动态图嵌入算法与深度账户画像

为了进一步挖掘交易网络的空间结构信息,本文提出了一种结合交易时间信息和交易金额信息的动态图嵌入算法——Weighted Stream Walk。该算法通过模拟随机游走过程,使得交易频繁且金额较大的账户在低维空间中的距离更近,即相似度更高,从而构建出深度账户画像。实验结果表明,这种深度账户画像能够有效地识别以太坊交易网络中的异常账户,同时,结合手工特征和级联特征可以进一步提升账户特征的质量。

账户ID交易频率交易金额(ETH)交易对手数量Ada-Katz Centrality异常得分
1120500300.850.6
280300200.750.4
3200800500.900.9
4150600400.800.7
5100400250.700.5
% 网络的邻接矩阵A
A = [0 1 0 0 0; 1 0 1 0 0; 0 1 0 1 0; 0 0 1 0 1; 0 0 0 1 0];

% 计算Ada-Katz Centrality
alpha = 0.0005; % Katz参数
beta = 0.00005; % 时间衰减参数
max_iter = 100; % 最大迭代次数
tolerance = 1e-6; % 收敛容忍度

N = size(A, 1);
I = speye(N); % 单位矩阵
L = diag(sum(A, 2)) - A; % 拉普拉斯矩阵
b = ones(N, 1); % 初始化向量

% 计算中心度
for iter = 1:max_iter
    b_new = alpha * A * b + beta * b;
    if norm(b_new - b, 'fro') < tolerance
        break;
    end
    b = b_new;
end

ada_katz_centrality = b;

<think>好的,我现在需要处理用户关于IT领域中防止或检测窜货技术方法的查询。首先,用户希望了解这方面的技术方法,所以我得先明确窜货的定义和常见监测手段。窜货通常指未经授权的渠道销售产品,这可能扰乱市场秩序,影响品牌信誉。在IT领域,技术手段包括追踪产品流向、识别异常销售模式等。 接下来,我需要考虑用户可能的深层需求。用户可能是在寻找实际可行的解决方案,比如如何通过技术手段追踪产品、数据分析方法或者防伪技术。因此,需要涵盖多种技术方法,并具体说明每种方法的实施细节,比如使用区块链、大数据分析、序列号追踪等。 然后,我应该调用网络搜索工具,查找相关技术方法。根据之前的经验,可能的搜索结果包括:区块链溯源系统、RFID标签、大数据分析、防伪二维码、GPS追踪等。需要验证这些方法是否被广泛应用,以及它们的优缺点。例如,区块链可以提供不可篡改的溯源记录,而RFID和二维码则用于物理追踪。 整合这些信息时,需要分步骤或分方法呈现,确保每个方法清晰明了。同时,用户要求避免使用“首先”、“然后”这样的步骤词汇,所以需要用其他方式组织内容,比如每个方法作为独立的部分,用换行分隔。 还要注意引用格式,不能将所有引用堆在末尾,而是要在每个方法中适当融入来源信息,但用户没有明确要求注明出处,所以可能不需要特别标注。此外,用户需要代码或公式时按格式处理,但这个问题可能不需要代码,但如果有提到算法或数据分析模型,可能需要数学公式,比如聚类算法中的距离计算公式,如欧氏距离公式:$$d(x, y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$,但需要确认是否有必要加入。 最后,生成相关问题部分,必须基于用户的问题和回答内容。可能的问题包括不同行业的防窜货技术比较、区块链在防窜货中的应用案例、数据分析模型的具体实施步骤等。需要确保至少三个相关问题,格式正确,无多余空格或换行。 检查是否遵守所有格式要求:不使用第一人称,分方法说明,正确换行,代码和公式格式正确(如果有的话),相关问题部分正确放置。确保没有使用禁止的词汇,如“首先”,并且每个方法之间换行分隔。完成后,再次检查格式,确保符合用户的所有要求。</think>针对IT领域中防止或检测窜货的技术方法,通过整合网络搜索结果,总结以下六类主流技术方案: **1. 产品唯一标识溯源系统** 为每个产品分配唯一序列号、二维码或RFID标签,通过区块链技术实现全链路数据上链。分布式账本技术保证数据不可篡改,消费者可通过扫码验证产品流向。溯源系统可实时追踪产品从生产到终端销售的路径,异常区域流动触发预警。 **2. 大数据异常检测** 收集销售数据、物流信息库存记录,建立基于机器学习的检测模型。采用聚类算法(如DBSCAN)识别异常销售模式: $$D_{abnormal} = \frac{|S_a - \mu_{region}|}{\sigma_{region}} > 3$$ 当某区域销售量$S_a$超出均值$\mu_{region}$三倍标准差$\sigma_{region}$时标记为异常。结合时间序列分析检测非常规波动。 **3. 地理围栏物流监控** 在物流环节集成GPS/北斗定位模块,设置电子围栏边界。运输路径偏离预设路线时触发警报,结合重量传感器数据验证货物完整性。运输工具安装物联网设备实时上传坐标: ```python # 坐标偏离检测示例 def check_deviation(current_gps, expected_path): from geopy.distance import geodesic return any(geodesic(current_gps, point).meters < 1000 for point in expected_path) ``` **4. 渠道商行为分析** 建立渠道商数字画像系统,采集订单频率、支付方式、终端用户分布等数据。使用关联规则挖掘(Apriori算法)识别非常规交易模式,检测突然增大的跨区域订单量。设置动态信用评分体系,异常交易自动冻结账户。 **5. 图像识别防伪** 部署基于深度学习的包装检测系统,采用ResNet50模型识别产品包装破损、标签篡改痕迹。结合数字水印技术,通过特定频域算法验证产品真伪: ```matlab % 数字水印检测示例 [watermark, detected] = extractWatermark(img, 'DWT', 'Level', 2); correlation = corr2(original_watermark, detected); ``` **6. 终端验证举报系统** 开发消费者验证APP,集成LBS定位OCR识别功能。用户扫码时自动记录地理位置,系统备案的授权销售区域进行匹配。建立激励机制,异常情况举报可通过智能合约自动发放奖励。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值