📊 物联网技术与数据分析 | 物联网系统设计 | 模型构建
✨ 专业领域:
物联网系统架构设计
智能设备与传感器网络
数据采集与处理
物联网大数据分析
智能家居与工业物联网
边缘计算与云计算
物联网安全与隐私保护
💡 擅长工具:
Python/R/Matlab 数据分析与建模
物联网平台与设备编程
数据流与实时监控系统设计
机器学习与预测模型应用
物联网协议(MQTT, CoAP, HTTP)
物联网数据可视化工具
✅ 物联网专业题目与数据:物联网毕业论文【题目+数据】
https://blog.csdn.net/yuboqiuming/article/details/144252393?spm=1001.2014.3001.5502
一、轻量级目标检测平台架构与功能模块设计
(一)平台总体目标与架构设计
基于物联网的轻量级目标检测平台旨在满足公共交通及相关场景中对目标检测的高效、精准且低延迟需求。其总体目标是能够在资源受限的嵌入式设备上实现快速准确的目标检测,并具备良好的可扩展性与适应性,以应对不同的应用场景和数据变化。
平台整体架构采用分层设计理念,自下而上包括感知层、数据处理层、模型管理层以及应用服务层。感知层由各类物联网传感器与嵌入式设备组成,负责采集原始数据,如摄像头捕捉公交场景中的图像信息、传感器获取客流量数据等。数据处理层对感知层传来的数据进行初步处理,包括数据清洗、格式转换等操作,以确保数据的可用性与一致性。模型管理层涵盖了数据集管理、模型训练、评估、量化与部署等关键功能模块,是整个平台的核心部分,负责构建、优化与分发目标检测模型。应用服务层则面向最终用户与其他系统,提供公交辅助驾驶、客流统计、数据可视化等功能接口,实现与外界的交互与数据展示。
(二)功能模块详细设计
- 数据集管理模块
该模块主要负责数据集的收集、整理、标注与存储管理。针对公交场景下的目标检测任务,需要收集大量包含公交车、乘客、行人、交通标志等目标的图像与视频数据。通过人工标注或借助半自动标注工具,为数据集中的目标添加准确的类别标签与边界框信息。数据集管理模块采用高效的数据存储结构与索引机制,以便在模型训练与评估过程中快速检索与调用数据。例