机器学习入门——常用激活函数(Activation Function)表格形式总结

图片摘自高扬,卫峥所著的《白话深度学习与TensorFlow》


激活函数(activation function)——也有翻译成激励函数,变换函数的,是神经元中重要的组成部分,如果不用激励函数,每一层输出都是上层输入的线性函数,无论神经网络有多少层,输出都是输入的线性组合,这种情况就是最原始的感知机(Perceptron)。如果使用的话,激活函数给神经元引入了非线性因素,使得神经网络可以任意逼近任何非线性函数,这样神经网络就可以应用到众多的非线性模型中。

神经元的各种数学模型的主要区别在于采用了不同的激活函数,从而使神经元具有不同的信息处理特性,例如Sigmoid函数(又称Logistic函数)经常作为我们学习机器学习接触到的第一个激活函数,是因为他的数学形式在微积分中比较容易处理,Tanh函数常用于循环神经网路RNN,ReLU(rectified linear units)函数常用于大部分的卷积神经网络CNN,等等。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值