mininum_snap笔记

概念

在这里插入图片描述

value正比正比
位置
速度
加速度角度(旋转)
jerk角速度推力(移动平缓,易于视觉跟踪)
snap角加速度推力导数(节约能源)

在这里插入图片描述

在这里插入图片描述

凸优化算法 convex optimization

凸优化(Convex Optimization)是数学和计算机科学领域的一个重要分支,主要研究如何有效地解决凸优化问题。凸优化问题的主要目标是找到一个函数的最小值,其中函数是凸函数,同时满足一定的约束条件,这些约束条件也必须是凸的。凸函数具有一些重要的性质,使得它们在优化问题中具有良好的性质和可行的解决方案。

凸优化问题的主要关注点包括以下几个方面:

  1. 凸函数:研究凸函数的性质、性质和特点,以及如何识别和构造凸函数。凸函数在凸优化中扮演着核心角色,因为它们的全局最小值可以在有限的时间内找到。

  2. 凸优化问题的建模:将实际问题转化为凸优化问题的数学建模过程。这通常涉及定义目标函数和约束条件,并确保它们满足凸性质。

  3. 凸优化算法:开发用于解决凸优化问题的算法。这些算法包括梯度下降法、内点法、次梯度法等。这些算法通常能够在有限的迭代次数内找到全局最优解。

  4. 凸优化应用:凸优化在各种领域中都有广泛的应用,包括机器学习、信号处理、金融、工程优化、网络设计等。在这些领域中,凸优化被用来解决最优化问题,以优化系统的性能或资源利用率。

总的来说,凸优化主要关注如何有效地解决凸函数最小化问题,这些问题在科学和工程中具有广泛的应用,因此凸优化是一个重要且活跃的研究领域。

动力学

在这里插入图片描述

讲状态空间简化成四个变量

在这里插入图片描述
X=【位置xyz,角度(欧拉角),xyz水平速度,角速度】
xb,yb,zb都能被xyz表示

在这里插入图片描述
每段多项式的阶数最低为k分之5(k为轨迹段数)

### 学习最小飞行时间算法的资源 #### 一、理论基础 为了理解最小飞行时间(Minimum Flight Time, MFT)算法,掌握优化理论和动态规划的基础知识至关重要。这些概念构成了求解最短路径或最优轨迹问题的核心框架[^1]。 #### 二、具体实现方式 针对航空场景下的MFT问题,通常采用的方法包括但不限于: - **经典数值方法**:如梯度下降法、牛顿迭代等传统优化手段可以用来近似解决该类连续变量优化问题; - **启发式搜索策略**:遗传算法(Genetic Algorithm),粒子群优化(Particle Swarm Optimization)等群体智能算法也被广泛应用于寻找全局最优解; - **强化学习(Reinforcement Learning)**:通过让代理(agent)不断尝试不同的动作(action), 并依据环境反馈调整行为模式,最终达到缩短总航程的目的。这种方法特别适合处理具有不确定性和复杂约束条件的任务情境[^2]。 #### 三、实践指南与工具包推荐 对于希望深入研究此课题的研究人员而言,建议从以下几个方面入手准备: - 阅读相关学术论文和技术报告,了解当前主流解决方案及其优劣分析; - 利用开源平台(如GitHub)查找现成项目实例作为起点,熟悉常用编程接口(APIs) 和库(libraries); - 探索专门面向航空航天工程设计的专业软件套件,比如MATLAB/Simulink 提供的强大建模功能可以帮助快速搭建原型系统并验证想法; ```matlab % MATLAB代码片段展示如何定义一个简单的成本函数用于模拟飞行过程中的燃料消耗情况 function J = costFunction(x) % 输入参数x代表决策向量 (例如速度v,高度h,...) % 定义物理常数和其他必要参数... % 计算目标函数值J表示整个旅程所需的时间/能量开销 end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值