移动机器人自主进行同时定位和地图构建(SLAM)

移动机器人同时定位和地图构建是自主导航技术的前提条件,为移动机器人做出下一步控制策略提供场景信息,提高移动机器人的决策效率。移动机器人自主探索可以解释为移动机器人自主进行同时定位和地图构建(SLAM)的过程,是移动机器人自主导航领域的研究热点。移动机器人实时避障技术是移动机器人自主导航技术领域的关键,决定着移动机器人自主导航的成败。封闭场景中的同时定位和地图构建则需要移动机器人更加具有自主性和快速性,降低人工成本,提高经济效益。面对道路上越来越多的车辆与行人,传统的移动机器人避障方法已经不能应对日益复杂的交通情况,所以,研究人员开始对提高移动机器人避障效率做深入的研究。移动机器人避障不仅考虑行驶可靠性,还考虑车辆的驾驶安全性、快速性等,采用高级算法设计移动机器人避障方法,可以有效缓解道路拥堵的状况、减少交通事故发生的概率、提高驾驶安全性。在自主导航领域,本文主要在以下的三个方面进行研究:(1)针对同时定位和地图构建问题,本文利用二维激光雷达采集场景信息,在原有的SLAM基础上,提高场景地图构建的精确性和实时性问题,本文主要在场景地图构建的扫描匹配过程中,通过将迭代最近点法与邻近区域法相结合,在不同的移动机器人运行速度下实时的构建场景地图,一定程度上提高了SLAM的效率和地图构建的精确度。(2)针对移动机器人自主探索的问题,本文重视地图完整性和时效性问题,通过前沿目标点的方法收集探索目标点,采用快速拓展随机数将目标点分为局部目标点和全局目标点,并结合信息增益的指标函数确定探索目标点,提高了自主探索的实时性和地图完整性。最后采用A*算法规划移动机器人运动路径,提高了移动机器人的探索效率。(3)针对移动机器人实时避障的问题,本文考虑移动机器人在场景地图信息未知的情况下的实时避障问题。首先,将移动机器人运动过程中的障碍物分为静态障碍物和动态障碍物。在避开静态障碍物时,在向量场直方图法的基础之上,提出自适应的阈值的避障方法,解决移动机器人对阈值敏感以及陷入死区问题,在避开动态障碍物时,提出改进的相对坐标系下的避障方法,在避障的过程中考虑移动机器人自身尺寸对于避障效果的影响。最后,通过仿真和实验验证了所提出方法的有效性。
论文引用

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页