Ollama 更新!本地跑 LLama3.2,轻量级+视觉能力,能媲美GPT-4o?

前段时间,Meta 开源了 Llama 3.2 轻量化模型,为移动端跑大模型提供了新选择!

同时,Llama 3.2 视觉模型(Llama 3.2 Vision)也正式开源,号称媲美 GPT-4o。

前两天,Llama 3.2 Vision 已在 Ollama 上线!

今日分享,就对它实测一番。

最后,应用到我们上篇的票据识别任务中,看看效果真有官宣的那么惊艳么?

1. Llama 3.2 亮点

老规矩,还是简短介绍下:Llama 3.2 都有哪些亮点

一句话:轻量化 + 视觉多模态能力!

具体点:

  • 文本模型:有 1B 和 3B 版本,即便参数少,也支持128k tokens的上下文长度;基于LoRA和SpinQuant 对模型进行深度优化,内存使用量减少41%推理效率翻了2-4倍

  • 多模态模型:有 11B 和 90B 版本,在视觉理解方面,与Claude3 Haiku和GPT 4o-mini 可 PK。

2. Llama 3.2 实测

Ollama 是面向小白友好的大模型部署工具,为此本篇继续采用 Ollama 跑 Llama 3.2。

不了解 Ollama 的小伙伴,可翻看教程:

本地部署大模型?Ollama 部署和实战,看这篇就够了

2.1 环境准备

参考上述教程,假设你在本地已经准备好 Ollama。

当前 Ollama Library 中已支持 Llama 3.2 下载,因此,一行命令拉起 llama3.2-vision。

ollama run llama3.2-vision   

如果遇到如下报错:

pulling manifest    Error: pull model manifest: 412:       The model you are attempting to pull requires a newer version of Ollama.   

说明你的 ollama 版本需要更新了。

如果你也和我一样,采用 docker 安装,则需要删除容器,重新下载最新镜像进行安装:

docker stop ollama   docker rm ollama   docker image rm ollama/ollama   # 注:海外镜像,国内用户需自备梯子   docker pull ollama/ollama   

可以发现,当前最新版本为 0.4.1:

ollama --version   ollama version is 0.4.1   

然后,再起一个容器:

docker run -d --gpus "device=2" -v ollama:/root/.ollama -p 3002:11434 --restart unless-stopped --name ollama ollama/ollama   

注:我这里指定 --gpus "device=2",如果单张显存不够,需指定多张卡,Ollama 会帮你自动分配。

显存占用情况如何?

2.2 文本模型

进入容器,并下载模型 llama3.2 3B版本:

docker exec -it ollama /bin/bash   ollama run llama3.2   

显存占用:请确保至少 4 G 显存。

2.3 多模态模型

进入容器,并下载模型 llama3.2-vision 11B版本:

docker exec -it ollama /bin/bash   ollama run llama3.2-vision   

显存占用:请确保至少 12 G 显存。

注:ollama 中模型默认采用了 4bit 量化。

3. 接入 Dify

3.1 模型接入

要把 Ollama 部署的模型接入 Dify 有两种方式。

首先,找到设置 - 模型供应商。

**方式一:**找到 Ollama 类型,然后进行添加,记得把Vision能力打开:

方式二:

把 Ollama 模型接入 OneAPI,然后在模型供应商这里选择 OpenAI-API-compatible

个人更推荐 方式二,你会体会到接口统一的快乐~

3.2 应用集成

最后,我们在上篇的基础上,把用到 Qwen2-VL 的组件,LLM 全部替换成刚刚接入的 llama3.2-vision,如下图:

实测效果咋样?

嗯~ o( ̄▽ ̄)o 价格等基本信息还是抓到了。

只是,相比上篇实测的 Qwen2-VL 就差点意思了:

  • 从中文指令遵循上看:给到同样的提示词,llama3.2-vision 压根不按你的意图来;

  • 从识别结果上看:中文 OCR 也被 Qwen2-VL 甩开好几条街。

当然,换用 90B 的模型会不会好很多?感兴趣的朋友可以试试~

结论:现阶段,对于票据识别这个任务而言,综合考虑成本和效果,还是调用云端的 Qwen2-VL-72B 吧。

写在最后

本文带大家本地跑了 Meta 最新开源的 Llama 3.2,并在票据识别任务上进行了实测。

个人体验而言:Llama 系列,都得在中文指令数据上微调后,才能中文场景中使用,同等参数规模下,国产大模型其实更具性价比。

如果对你有帮助,欢迎点赞收藏备用。


如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
### MiniCPM-V、Llama以及LLaVA的技术详情 #### MiniCPM-V概述 MiniCPM-V是一款能够在移动设备上运行的大规模多模态语言模型(MMLLM),其性能可媲美GPT-4V级别[^1]。该研究旨在探索如何让强大的AI能力部署到资源受限环境中,比如智能手机或其他边缘计算平台。 #### LLaMA的支持情况 对于基于Transformer架构构建的语言模型而言,推理效率至关重要。MiniCPM项目组通过优化使得MiniCPM能够兼容多种流行的推理框架,其中包括但不限于`llama.cpp`, `ollama`, `fastllm` 和 `mlx_lm`等工具链[^4]。这意味着开发者可以利用这些高效轻量级库来加速MiniCPM的应用场景开发过程。 ```python import llama_cpp as lc model = lc.Model('path/to/mini_cpm_v') output = model.generate(prompt="Tell me about the weather today.") print(output) ``` #### 多模态融合特性 除了传统的文本处理外,现代大型语言模型还趋向于集成视觉理解功能。例如,在某些版本中加入了图像识别模块,允许用户上传图片并获得相应的描述或解释;而像LLaVA这样的增强型变体则进一步扩展了这一概念,不仅限于静态图形分析,还包括视频流解析等功能[^2]。 #### 训练数据的重要性 值得注意的是,尽管拥有先进的算法设计,但如果缺乏高质量且多样化的训练素材,则难以实现理想的智能化水平。研究表明,在接近训练周期末端所使用的那部分资料往往对最终形成的对话风格有着更为显著的影响[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值