相机标定--A Flexible New Technique for Camera Calibration

本文介绍张正友提出的简单实用相机标定算法,利用棋盘格图案快速准确完成标定。文中详细阐述了2D与3D点投影关系、平面到图像的单应性变换、相机内外参数的约束及求解过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A Flexible New Technique for Camera Calibration
Technical Report
MSR-TR-98-71

大家可以参考一下这个文章: http://www.cnblogs.com/wangguchangqing/p/8335131.html

张正友的标定算法:提出简单实用的相机标定算法,使得普通研究者可以自己打印棋盘格来快速准确的完成相机标定任务。

2 Basic Equations
一个 2D point m = [u,v]T, 一个 3D point is denoted by M = [X,Y,Z]T, 它们对应的增广坐标形式分别为 m~ = [u,v,1]T M~ = [X,Y,Z,1]T
我们使用普通的 pinhole 对相机进行建模,a 3D point M and its image projection m的关系如下所示
在这里插入图片描述
其中 s is an arbitrary scale factor, (R,t), 称之为相机外参数,分别表示旋转矩阵和平移向量,表示世界坐标系和相机坐标系直接的联系, is the rotation and translation which relates the world coordinate system to the camera coordinate system

A, called the camera intrinsic matrix 相机内参数矩阵
在这里插入图片描述
(u 0 ,v 0 ) the coordinates of the principal point, α and β the scale factors in image u and v axes, and γ the parameter describing the skewness of the two image axes

2.2 Homography between the model plane and its image
we assume the model plane is on Z = 0 of the world coordinate system,我们假定标定板平面位于世界坐标系的 Z=0

张氏标定法中,将世界坐标系构建在棋盘格平面上,令棋盘格平面为Z=0的平面。则可得
在这里插入图片描述
因为 Z=0,所以 M = [X,Y ]T ,, M~ = [X,Y,1] T,a model point M and its image m is related by a homography H:
在这里插入图片描述
homography 平面上的点的对应关系, Z=0 作为标定板平面

2.3 Constraints on the intrinsic parameters 相机内参的约束
给定一个平面标定板的图像,其对应的 homography 可以被估计出来。我们使用 H =[h1 h2 h3] 来表示,则对于每张图像有如下关系
在这里插入图片描述
r1 和 r2 是标准正交向量, 所以 r1T*r2=0 以及 ||r1||=||r2||=1
一个 homography 有8个自由度,相机外参数有 6个变量(3 for rotation and 3 for translation),we can only obtain 2 constraints on the intrinsic parameters

2.4 Geometric Interpretation 几何解释
这里主要介绍的上面公式(3)和(4)的几何推导过程,与 absolute conic 联系起来

3 Solving Camera Calibration 相机标定的求解
3.1 Closed-form solution
假定 A 为相机内参数矩阵
在这里插入图片描述
其中
在这里插入图片描述
所以 the two fundamental constraints (3) and (4), from a given homography, can be rewritten as 2 homogeneous equations in b:
在这里插入图片描述

Once b is estimated, we can compute all camera intrinsic matrix A. See Appendix B for the details.

Once A is known, the extrinsic parameters for each image is readily computed
在这里插入图片描述
3.2 Maximum likelihood estimation
在这里插入图片描述
nonlinear minimization problem : Levenberg-Marquardt Algorithm

3.3 Dealing with radial distortion
相机的径向畸变
在这里插入图片描述
Complete Maximum Likelihood Estimation
在这里插入图片描述
3.4 Summary
The recommended calibration procedure is as follows:
在这里插入图片描述

http://www.cnblogs.com/wangguchangqing/p/8335131.html

相机校准是在计算机视觉和图像处理中非常重要的一项技术。它涉及到将图像中的像素坐标与实际世界中的物理坐标相对应。而灵活的新技术可以提供更准确和可靠的相机校准方法。 传统的相机校准技术通常需要使用专门的校准板或标定物,并需要在特定的条件下进行拍摄。然而,这种方法存在很多限制,如需要准备专门的设备和场地,并且耗费时间和精力。此外,这种方法对于不同类型的相机和不同的环境可能不适用。 而这种灵活的新技术采用了一种基于特征点的相机校准方法。通过在不同位置、角度和光照条件下拍摄多张图像,并提取出图像中的特征点,可以建立一个相机模型。接下来,通过优化算法,可以将特征点的图像坐标与其在实际世界中的物理坐标相匹配,从而计算出相机的内部参数和外部参数。这种方法具有很高的灵活性,因为它不需要特殊的校准板或设备,只需要一些常见的场景和物体即可。 这种灵活的新技术可以应用于许多领域,如三维重建、增强现实和机器人导航等。它可以提供更准确和精确的相机校准结果,从而改善图像处理和计算机视觉算法的性能。此外,由于其灵活性,它也更容易被广泛应用于各种不同的相机和环境中。因此,这种灵活的相机校准技术具有很高的实用价值和发展潜力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值