《现代控制系统》第五章——反馈控制系统性能 5.8 高阶线性系统的简化

《现代控制系统》第五章——反馈控制系统性能

5.8 线性系统的简化

用近似的低阶系统来学习高阶系统是非常有用的。通过满足一些系统性能,一个四阶的系统便可以近似等效为一个二阶系统。有几种不同的方法可以减少系统的阶数

方法一 删除极点法

我们可以通过删除转换方程里面不重要的极点的方式来减少阶数,什么样的极点才是不重要极点呢?在S平面里,极点离虚轴越远对系统的影响越小。举个例子,一个具有如下转换方程的系统 G ( s ) = K s ( s + 2 ) ( s + 30 ) G(s)=\frac{K}{s(s+2)(s+30)} G(s)=s(s+2)(s+30)K
它有两个极点-2,和-30。-30 这个极点离虚轴很远。因此我们可以删掉这个极点,为了使新系统的稳态响应与原系统一致,我们需要在分子上补上1/30,因此新系统为 G ( s ) = ( K / 30 ) s ( s + 2 ) G(s)=\frac{(K / 30)}{s(s+2)} G(s)=s(s+2)(K/30)
我们用Matlab仿真看一下两个系统是否有接近的时域性能

%原三阶系统
K = 1;
C1 = zpk(0,[0,-2,-30],K)
step(C1)
stepinfo(C1)
%去掉一个不重要极点之后的二阶系统
K = 1;
C2 = zpk(0,[0,-2],K/30)
step(C2)
stepinfo(C2)

原系统
在这里插入图片描述
新系统
在这里插入图片描述
对比发现两个系统相差不大

方法二 频域近似法

另一种复杂的近似方法是频域近似法,虽然第八章才讲解频域分析,但并不影响这里我们的讨论。该方法的原理是用近似频域特性的低阶系统去等效高阶系统。假设我们的高阶系统转换方程如下 G H ( s ) = K a m s m + a m − 1 s m − 1 + ⋯ + a 1 s + 1 b n s n + b n − 1 s n − 1 + ⋯ + b 1 s + 1 G_{H}(s)=K \frac{a_{m} s^{m}+a_{m-1} s^{m-1}+\cdots+a_{1} s+1}{b_{n} s^{n}+b_{n-1} s^{n-1}+\cdots+b_{1} s+1} GH(s)=Kbnsn+bn1sn1++b1s+1amsm+am1sm1++a1s+1
这里极点都在左s平面,且 m ≤ n m \leq n mn
同时我们用来近似的低阶系统如下 G L ( s ) = K c p s p + ⋯ + c 1 s + 1 d g s g + ⋯ + d 1 s + 1 G_{L}(s)=K \frac{c_{p} s^{p}+\cdots+c_{1} s+1}{d_{g} s^{g}+\cdots+d_{1} s+1} GL(s)=Kdgsg++d1s+1cpsp++c1s+1
这里 p ≤ g < n p \leq g<n pg<n。两个系统用同样的K值,确保了他们具有一样的稳态响应。我们要做的就是确定好c 和 d使两个系统的频率响应近似,这里我们只给出方法,很无脑,一步步跟着做就可以。

M ( s ) M(s) M(s) Δ ( s ) \Delta(s) Δ(s)分别代表 G H ( s ) / G L ( s ) G_{H}(s) / G_{L}(s) GH(s)/GL(s)的分子项和分母项,我们定义运算:
M ( k ) ( s ) = d k d s k M ( s ) M^{(k)}(s)=\frac{d^{k}}{d s^{k}} M(s) M(k)(s)=dskdkM(s) Δ ( k ) ( s ) = d k d s k Δ ( s ) \Delta^{(k)}(s)=\frac{d^{k}}{d s^{k}} \Delta(s) Δ(k)(s)=dskdkΔ(s) M 2 q = ∑ k = 0 2 q ( − 1 ) k + q M ( k ) ( 0 ) M ( 2 q − k ) ( 0 ) k ! ( 2 q − k ) ! , q = 0 , 1 , 2 … M_{2 q}=\sum_{k=0}^{2 q} \frac{(-1)^{k+q} M^{(k)}(0) M^{(2 q-k)}(0)}{k !(2 q-k) !}, \quad q=0,1,2 \ldots M2q=k=02qk!(2qk)!(1)k+qM(k)(0)M(2qk)(0),q=0,1,2 Δ 2 q = ∑ k = 0 2 q ( − 1 ) k + q Δ ( k ) ( 0 ) Δ ( 2 q − k ) ( 0 ) k ! ( 2 q − k ) ! , q = 0 , 1 , 2 … \Delta_{2 q}=\sum_{k=0}^{2 q} \frac{(-1)^{k+q} \Delta^{(k)}(0) \Delta^{(2 q-k)}(0)}{k !(2 q-k) !}, \quad q=0,1,2 \ldots Δ2q=k=02qk!(2qk)!(1)k+qΔ(k)(0)Δ(2qk)(0),q=0,1,2
通过对不同的q值联立 M 2 q = Δ 2 q M_{2 q}=\Delta_{2 q} M2q=Δ2q 就可以得到c d的值。看起来是不是很复杂,举个例子就理解了

方法二举例

考虑以下高阶系统
G H ( s ) = 6 s 3 + 6 s 2 + 11 s + 6 = 1 1 + 11 6 s + s 2 + 1 6 s 3 G_{H}(s)=\frac{6}{s^{3}+6 s^{2}+11 s+6}=\frac{1}{1+\frac{11}{6} s+s^{2}+\frac{1}{6} s^{3}} GH(s)=s3+6s2+11s+66=1+611s+s2+61s31
我们希望用一个二阶系统来近似,该二阶系统为 G L ( s ) = 1 1 + d 1 s + d 2 s 2 G_{L}(s)=\frac{1}{1+d_{1} s+d_{2} s^{2}} GL(s)=1+d1s+d2s21
根据定义我们有 M ( 0 ) ( s ) = 1 + d 1 s + d 2 s 2 M^{(0)}(s)=1+d_{1} s+d_{2} s^{2} M(0)(s)=1+d1s+d2s2 因此
M ( 0 ) ( 0 ) = 1 Δ ( 0 ) ( 0 ) = 1 M ( 1 ) ( 0 ) = d 1 Δ ( 1 ) ( 0 ) = 11 6 M ( 2 ) ( 0 ) = 2 d 2 Δ ( 2 ) ( 0 ) = 2 M ( 3 ) ( 0 ) = 0 Δ ( 3 ) ( 0 ) = 1 \begin{array}{ll} M^{(0)}(0)=1 \quad \Delta^{(0)}(0)=1 \\ M^{(1)}(0)=d_{1} \quad \Delta^{(1)}(0)=\frac{11}{6} \\ M^{(2)}(0)=2 d_{2} \quad \Delta^{(2)}(0)=2\\ M^{(3)}(0)=0 \quad \Delta^{(3)}(0)=1 \end{array} M(0)(0)=1Δ(0)(0)=1M(1)(0)=d1Δ(1)(0)=611M(2)(0)=2d2Δ(2)(0)=2M(3)(0)=0Δ(3)(0)=1
然后我们分别对q=1,q=2 联立方程 M 2 q = Δ 2 q M_{2 q}=\Delta_{2 q} M2q=Δ2q
对于q=1,我们有
M 2 = ( − 1 ) M ( 0 ) ( 0 ) M ( 2 ) ( 0 ) 2 + M ( 1 ) ( 0 ) M ( 1 ) ( 0 ) 1 + ( − 1 ) M ( 2 ) ( 0 ) M ( 0 ) ( 0 ) 2 = − d 2 + d 1 2 − d 2 = − 2 d 2 + d 1 2 \begin{aligned} M_{2} &=(-1) \frac{M^{(0)}(0) M^{(2)}(0)}{2}+\frac{M^{(1)}(0) M^{(1)}(0)}{1}+(-1) \frac{M^{(2)}(0) M^{(0)}(0)}{2} \\ &=-d_{2}+d_{1}^{2}-d_{2}=-2 d_{2}+d_{1}^{2} \end{aligned} M2=(1)2M(0)(0)M(2)(0)+1M(1)(0)M(1)(0)+(1)2M(2)(0)M(0)(0)=d2+d12d2=2d2+d12 Δ 2 = ( − 1 ) Δ ( 0 ) ( 0 ) Δ ( 2 ) ( 0 ) 2 + Δ ( 1 ) ( 0 ) Δ ( 1 ) ( 0 ) 1 + ( − 1 ) Δ ( 2 ) ( 0 ) Δ ( 0 ) ( 0 ) 2 = − 1 + 121 36 − 1 = 49 36 \begin{array}{c} \Delta_{2}=(-1) \frac{\Delta^{(0)}(0) \Delta^{(2)}(0)}{2}+\frac{\Delta^{(1)}(0) \Delta^{(1)}(0)}{1}+(-1) \frac{\Delta^{(2)}(0) \Delta^{(0)}(0)}{2} \\ =-1+\frac{121}{36}-1=\frac{49}{36} \end{array} Δ2=(1)2Δ(0)(0)Δ(2)(0)+1Δ(1)(0)Δ(1)(0)+(1)2Δ(2)(0)Δ(0)(0)=1+361211=3649
两式相等得到
− 2 d 2 + d 1 2 = 49 36 -2 d_{2}+d_{1}^{2}=\frac{49}{36} 2d2+d12=3649
还差一个方程,我们令q=2重新联立方程得到
d 2 2 = 7 18 d_{2}^{2}=\frac{7}{18} d22=187
求解上面两个方程构成的方程组我们可以得到 d 1 = 1.615 d_{1}=1.615 d1=1.615 and d 2 = 0.624. d_{2}=0.624 . d2=0.624. (我们舍去了另外一对让系统不稳定的解),于是我们得到最终的近似二阶系统 G L ( s ) = 1 1 + 1.615 s + 0.624 s 2 = 1.60 s 2 + 2.590 s + 1.60 G_{L}(s)=\frac{1}{1+1.615 s+0.624 s^{2}}=\frac{1.60}{s^{2}+2.590 s+1.60} GL(s)=1+1.615s+0.624s21=s2+2.590s+1.601.60
我们再一次用Matlab检验一下近似结果

%原三阶系统
numerator = 6;
denominator = [1,6,11,6];
sys1 = tf(numerator,denominator)
step(sys1)
stepinfo(sys1)
%频域近似之后的二阶系统
numerator = 1;
denominator = [0.624,1.615,1];
sys2 = tf(numerator,denominator)
step(sys2)
stepinfo(sys2)

原系统的阶跃响应
在这里插入图片描述
近似二阶系统的阶跃响应
在这里插入图片描述
可以发现,两个系统的阶跃响应非常近似

其他方法

还有类似于劳斯等效法的其他近似方法,这里我们不赘述了。原文描述我贴在这里
在这里插入图片描述

参考文献

《Modern Control System》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值