网络药理学之薛定谔Schrödinge Maestro:7、批量分子对接(使用XGlide/Crossdocking模块进行蛋白质和配体多对多交叉对接)及生成热图

本篇文章初稿由组内pf同学倾情整理,感谢大神奉献!@BlastOrange

25.03.19回顾时发现漏洞和需要补充的地方。二次修正
呃呃呃呃修订了好多,结果CSDN卡住退出了……痛

需要大家自行准备多个蛋白质(PDB格式)和多个小分子配体(最好是mol2格式)。

注意,准备的蛋白质最好有共晶配体,没有的话没关系,见4.缺少配体/配体识别错误的蛋白处理

在开始批量对接前,确保你

  1. 设置好了薛定谔的工作目录。
  2. 在工作目录中新建了两个文件夹,分别是prep_protein来存放处理好的蛋白,prep_lig来存放处理好的配体。

1.处理蛋白质

导入蛋白质分子到薛定谔中,在工作区中选中这些蛋白,打开one step Protein Preperations模块。勾选:

  • Create disulfide bonds(如有二硫键,补全二硫键)
  • Fill in missing side chains using Prime(补全残基)

job settings设置好后点击RUN运行即可,其余参数在本人其他博客均有提及。

也可以不设置job settings,但可能会拖慢速度,设置时任务顶多跑几分钟左右。不设置可能会十几分钟。
在这里插入图片描述

任务完成后,选中所有处理好的蛋白,右键点击export_Structures输出结构到prep_protein文件夹中。

在这里插入图片描述

.mae.maegz没什么区别,只是后者采用算法压缩,占用空间更少,批量操作时更推荐.maegz格式。

2.处理配体

接着导入小分子配体到薛定谔中,在工作区选中所有小分子,找到LigPrep模块。
注意勾选 Determin chiralities from 3D structure(如果你的配体是mol2格式的话,不是的话见本人单个对接的博客)。

在这里插入图片描述
不建议使用OPSL2005,理由如下:

特性OPLS4OPLS_2005
发布时间2018年(更新)2005年(较早版本)
参数覆盖范围更广,覆盖更多官能团和药物分子基础覆盖,适合常见有机分子
精度验证基于量子力学和大规模实验数据优化基于经典力场参数化
分子对接表现更准确的结合模式预测和打分适用于一般性对接场景
计算效率稍高(因参数更复杂)略快(参数简化)
特殊结构支持支持金属配合物、大环化合物等复杂结构对非标准结构处理有限

任务完成后,选中所有处理好的配体,右键点击export_Structures输出结构。
在这里插入图片描述

此时工作区可以删除配体条目,避免工作区太多条目。

3.批量对接

3.1.输入蛋白

找到Crossdocking模块(原名xGlide)。

点击Add Complex…选择prep_protein的蛋白质文件。

在这里插入图片描述
可以看到,在这我们输入了7个蛋白。

3.1.1.弹出窗口:Choose Ligand

如果弹出窗口如下,说明你的蛋白中含有配体2个或2个以上。
在这里插入图片描述
本人是建议随便选一个即可。因为这个配体是蛋白原本含有的配体,作用只是在最后对接结果中会用原来的配体也对接一次,作为阳性对照,输出在第一行。

3.1.2.报错:Speicified structure did not have any ligands

字面意思,你的蛋白中不含有配体。 解决方案见4.缺少配体/配体识别错误的蛋白处理

在这里插入图片描述

其实我觉得这是薛定谔软件做的不到位的地方,按理来说我是批量输入蛋白的,其中一般只会有几个是不含有配体的蛋白,它应该至少报错告诉我是哪几个蛋白不含有配体,我好方便额外处理。并且把含有配体的蛋白正常输入。

3.2.输入配体

切换到ligand标签页,同样全选prep_lig中的所有配体。
可以看到这里我们输入了21个配体进行对接。
在这里插入图片描述

3.3.对接设置

点击Gird Generation,选择第二项,job settings设置好后点击RUN即可。
在这里插入图片描述

选项第一个:生成一个口袋,所有配体共用一个口袋(即一对多对接)
选项第二个:为每个配体生成一个单独的口袋用来对接(即交叉对接)
如果你的配体较大,可以调大outer boxsize,不过一般默认即可。

3.4.查看结果

对接完成后打开xglide_1文件夹(我这因为对接了很多次,所以打开了xglide_7),显示如下:
在这里插入图片描述
可以直接将里面所有的.maegz文件拖入软件查看结果。

或者file/import structure打开xglide_1文件夹,选择所有.maegz文件。

总之,工作区出现如下7个条目,分别对应7个蛋白:
在这里插入图片描述
点击右上角table即可查看对接分数。
在这里插入图片描述

其实可以看到,效果还是很好的,基本就差阳性对照零点几分(骄傲(╹ڡ╹ ),普遍都是-7左右。

3.4.1.很好用的小技巧1:标注结果

在这我们以6LUD蛋白为例,我们点击星星可以手动标注自己满意的结果。

PDB_ID Ligand为名的,就是蛋白本身含有的配体对接出来的结果,作为阳性对照。所以我个人会习惯给他们打上三颗星标注清楚。

因为条目是按照对接分数排名的,所以在这些阳性对照下面一般就是该蛋白对接分数最高的配体条目。我会标注上两颗星。

在这里插入图片描述

3.4.2.很好用的小技巧2:只展示对接分数

可以看到,这个表格展示的属性非常多,而且还有其他条目,但是我们只想看对接结果的对接分数怎么办?

实际上在表格的最右边存在一个属性树,我们可以只勾选Glide/Primary/docking scoreMaestro/Source File
在这里插入图片描述

现在的表格界面会变得干净很多,只剩下对接分数和源文件。
在这里插入图片描述

如果你在这个页面最右边没有找到属性树,说明导航栏忘记打开它了。
在这里插入图片描述

3.4.3.处理表格

最后在顶端导航栏导出表格Data/Export/Spreedsheet,注意勾选selected,保留3.4.3.我们提到的信息,并且以制表符分隔。

最后表格如下:
在这里插入图片描述

如果有更好的导出表格的方式欢迎评论区补充。

然后我们需要进行表格处理。
首先是生成一份含有共晶配体对比的数据表格,自己方便比较数据。
然后是生成一份不含共晶配体对比的数据表格,主要用来生成python热图。

dddd代码太长了,此处省略

总之,我们得到了这两个表格,打开含有共晶配体的表格来看下:
在这里插入图片描述
可以看到,标黄的就是共晶配体的对接分数。

为什么不用这一份生成热图,其实也是可以的,只不过我还处理了三个不含配体的蛋白,所以会有很多地方数据是缺的。
如果你数据不缺的话,可以直接用这一个表格跑热图。

除此之外,还有一些空缺的数据,这里主要是7S84这个蛋白,可能是对接的结果不是很好,总之需要单独再对他跑一次(推荐这次用SiteMap来做,具体见4.缺少配体/配体识别的蛋白处理,或者你可以换成XP来做)。

我这里单独跑完看了下数据:
在这里插入图片描述

确实都是-4点多,数据都不太好,总之最后我们补全了数据,拿到的不含共晶配体的表格如下:
在这里插入图片描述

3.4.4.python生成热图

dddd代码太长了,省略

结果如图:
在这里插入图片描述

4.缺少配体/配体识别错误的蛋白处理(SiteMap口袋识别)

除了以上正常的蛋白中含有共晶配体的情况,你可能还存在以下情况:

  • 蛋白确实没有共晶配体
  • 蛋白有共晶配体,但薛定谔识别错误。

在这我分别举例两个蛋白。首先是PIK3CB,这个蛋白在PDB数据库找不到,所以我是用alphafold3预测了结构,所以其没有共晶配体。

其次就是PDB ID7L1C的蛋白,它在PDB数据库如下:
在这里插入图片描述
可以看到确实存在两个共晶配体的。然而其放入薛定谔后,识别的层级目录如下:
在这里插入图片描述
可以看到没有被识别成Ligand层。

对以上情况蛋白的解决方案,可以很简单。我这边有三四个方案hhh,在下文我说我最推荐的一种。

其实为什么要在第一个标签页就区分add complex还是add receptor,就是因为薛定谔想在这一步就根据你的输入来提前判断,如果你选择的是add complex,那么它就默认你一定会用上蛋白中自带的配体,所以才会报错。

所以我们在3.1.输入蛋白时,选择Add Receptor,不再选择Add Complex即可。
在这里插入图片描述

然后我们可以在3.3.对接设置时,选择第四个选项Use SiteMap,使用薛定谔自己的口袋识别算法,自动识别蛋白中的口袋(这个模块我单个对接的博客也有讲到。
在这里插入图片描述
其他步骤和前面一样。不过这个方案用时会比第二个选项要慢,毕竟要多一步预测嘛。

除此之外,你也可以使用选项第三个进行盲对接。

最后的最后,对于含有配体的蛋白,实际上你也可以在第1步处理蛋白的时候就把它们的共晶配体全部去掉,这样就可以和缺少配体的蛋白同批次用sitemap处理啦。

好处就是全部合并为一个批次。
坏处就是要手动去除下配体(直接层级结构去除都行),然后对接时间会长一点。

准确度目测是不会差很多的。

分子对接过程中,Maestro完成了配对分子的计算分析工作,但是并没有成功将它们融合在一起。 分子对接是一种计算化学方法,用于预测两个分子之间的结合方式互作模式。Maestro是一种常用的分子对接软件,它根据空间构象搜索算法能量评估模型,尝试找到适合的分子排列方式。 然而,在这个特定的情况下,Maestro的计算结束了,但是没有形成融合的结果。可能的原因有多种。 首先,这可能是由于配对的分子之间存在不匹配或不兼容的化学性质导致的。分子之间的相互作用结合位点的准确性对于成功的融合非常重要,如果有不匹配或不兼容的化学性质存在,融合可能无法发。 此外,Maestro的计算结果还受到计算参数的影响。例如,计算过程中使用的力场评分函数,以及搜索算法的设置等都会影响最终的结果。 最后,分子对接自身是一项复杂的任务,成功的融合还涉及到许多其他因素,如水合效应、配体可动性、环境条件等等。Maestro的计算结果只是提供了一种初步预测,实际的融合可能需要进一步的实验验证优化。 总之,虽然Maestro分子对接过程中成功完成了计算任务,但最终没有形成融合结果。这可能是由于分子之间的不匹配性、计算参数的设置或其他因素导致的。在分子对接研究中,需要综合考虑多方面的因素,并进一步优化计算实验方法,以得到最理想的融合结果。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shanshandeisu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值