反常积分(1)

定义1

函数 f f f定义在无穷区间 [ a , + ∞ ) [a,+\infty) [a,+),且在区间 [ a , u ] [a,u] [a,u]上可积。

(1) lim ⁡ u → + ∞ ∫ a u f ( x ) = J \lim_{u \to +\infty}\int_{a}^{u}f(x)=J \tag{1} u+limauf(x)=J(1)
则称 J J J为函数 f f f [ a , + ∞ ) [a,+\infty) [a,+)上的无穷限反常极限
(1’) J = ∫ a + ∞ f ( x ) J=\int_{a}^{+\infty}f(x) \tag{1'} J=a+f(x)(1)
并称 ∫ a + ∞ f ( x ) \int_{a}^{+\infty}f(x) a+f(x)收敛




函数 f f f定义在无穷区间 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+),这样定义
∫ − ∞ + ∞ f ( x ) \int_{-\infty}^{+\infty}f(x) +f(x)
(3) = ∫ − ∞ a f ( x ) + ∫ a + ∞ f ( x ) =\int_{-\infty}^{a}f(x)+\int_{a}^{+\infty}f(x) \tag{3} =af(x)+a+f(x)(3)
其中 a a a任一实数

记住啊,只有后面两个狗东西都收敛,才能说这个无穷积分是收敛的啊。

yige 每个人都要知道的小东西

∫ 1 + ∞ d x x p \int_{1}^{+\infty}\frac{dx}{x^p} 1+xpdx
这个东西
p ≤ 1 发 散 于 + ∞ p \le 1 发散于 +\infty p1+
p > 1 收 敛 于 1 p − 1 p > 1 收敛于 \frac{1}{p-1} p>1p11

定义2

f f f定义在 ( a , b ] (a,b] (a,b]上,在点 a a a的任一个右邻域上无界(记住,不是a点无定义),但在任意内闭 [ u , b ] ⊂ ( a , b ] [u,b] \subset(a,b] [u,b](a,b]上有界可积,如果
(5) lim ⁡ u → a + ∫ u b f ( x ) = J \lim_{u \to a^+}\int_{u}^{b}f(x)=J \tag{5} ua+limubf(x)=J(5)
则称其为无界函数 f f f ( a , b ] (a,b] (a,b]上的反常积分
(5’) J = ∫ a b f ( x ) J=\int_{a}^{b}f(x) \tag{5'} J=abf(x)(5)

a a a称为 f f f的瑕点,也称瑕积分。





f f f的瑕点 c ∈ ( a , b ) c \in (a,b) c(a,b),怎么定义积分
∫ a b f ( x ) d x = \int_{a}^{b}f(x)dx= abf(x)dx=
∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int_{a}^{c}f(x)dx+\int_{c}^{b}f(x)dx acf(x)dx+cbf(x)dx
只有当后面两个东西收敛时候,才能说第一个东西是收敛的。





a , b a,b a,b都是 f f f的瑕点,而 f f f在任何 [ u , v ] ⊂ ( a , b ) [u,v] \subset(a,b) [u,v](a,b)上可积,这个时候瑕积分的定义
∫ a b f ( x ) d x = \int_{a}^{b}f(x)dx= abf(x)dx=
∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int_{a}^{c}f(x)dx+\int_{c}^{b}f(x)dx acf(x)dx+cbf(x)dx
其中 c ∈ ( a , b ) c \in (a,b) c(a,b)的任意实数系。

只有当后面两个东西收敛时候,才能说第一个东西是收敛的。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fgh431

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值