YOLOv5 深度学习不同状态下的消融实验

通过对比相同条件下训练YOLOv5模型的四次结果,发现小类别表现存在显著差异。调整Anchor后,模型精度降低但召回率提高,导致误检增加。增加网络层有利于小目标检测但可能影响大目标,通过独立的检测层或引入注意力机制可优化这一问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、条件不变,训练4次结果对比:
在这里插入图片描述
在这里插入图片描述同样条件下,训练四次模型,得到的结果会略有差别,其中小类别中个别会差异很大,如上图结果显示。

2、更改Anchor
详见文章:详解anchor手动设置
在这里插入图片描述
从上图结果看,更新Anchor后精度(找回结果中正确结果占比)下降,Recall(召回率)增大(所有应该找回结果里面真实找回结果与全部结果的比例),测试结果可以看出,误检出来的增多。

3、增加网络层(四层检测网络)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胖子工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值