信号与系统分析2025(春季)作业要求:第十四次作业

 

01 础作业


一、圆卷积

  已知两个序列 x [ n ] = { 2 , 1 , 2 , 1 , 4 } x\left[ n \right] = \left\{ {2,1,2,1,4} \right\} x[n]={2,1,2,1,4} h [ n ] = { 1 , 1 , 2 , 4 } h\left[ n \right] = \left\{ {1,1,2,4} \right\} h[n]={1,1,2,4} 。 求:

  (1) 计算两个序列的(线)卷积:

  (2) 计算两个序列的圆卷积, 圆卷积的长度分别取 7, 8。

注:其中 ⊗ 8 , ⊗ 7 \otimes _8 , \otimes _7 8,7 分别表示长度为 8, 7 的圆卷积。

  (3)

  长度为 4 序列 x [ n ] x\left[ n \right] x[n] 如下图所示, 是绘制出计算结果答案:

  【1】 x [ n ] x\left[ n \right] x[n] x [ n ] x\left[ n \right] x[n] 之间的线卷积。

  【2】 x [ n ] x\left[ n \right] x[n] x [ n ] x\left[ n \right] x[n] 之间的 4 点圆卷积。

  【3】 x [ n ] x\left[ n \right] x[n] x [ n ] x\left[ n \right] x[n] 之间的 10 点圆卷积。

  【4】 如果使得 x [ n ] x\left[ n \right] x[n] x [ n ] x\left[ n \right] x[n] 之间的圆卷积和线卷积相同, 求圆卷积长度 N 的最小值。

二、DFT性质

1、求序列的DFT

  已知 x [ n ] x\left[ n \right] x[n] 为有限长序列, 即当 n < 0 n < 0 n<0 n > N n > N n>N 时, x [ n ] = 0 x\left[ n \right] = 0 x[n]=0 , 且 N N N 是偶数。 已知 D F T { x [ n ] } = X [ k ] DFT\left\{ {x\left[ n \right]} \right\} = X\left[ k \right] DFT{x[n]}=X[k] , 试使用 X [ k ] X\left[ k \right] X[k] 来表示一下各个序列的 DFT。

  • 必做题: (1),(2),(4),(5)
  • 选做题: (3),(6),(7)

  (1)

  (2)

  (3)

  (4)

  (5)

  (6)

注: DFT 的长度为 2N。

  (7)

注:DFT 的长度为 N / 2 N/2 N/2

2、DFT 对偶特性

  • 选做题

  证明 DFT的对偶特性(对称特性):

  如果 :

那么:

三、DFT应用

1、频谱分析应用

  利用 DFT 来计算信号的频谱。 要求频谱分析的指标为:

  (1) 信号频谱中的最高频率 f M A X ≥ 20 k H z f_{MAX} \ge 20kHz fMAX20kHz
  (2) 离散频谱中频率间隔 f 1 ≤ 25 H z f_1 \le 25Hz f125Hz
  (3) 为了适应FFT算法, 采样数据点数 N 需要为 2 的整数次幂;

  根据以上数据频谱分析指标要求, 试确定:
  (1) 数据采样时间间隔 T s T_s Ts
  (2) 采样数据点数 N N N

2、DFT反变换

  已知有限长序列 x [ n ] x\left[ n \right] x[n] 的 DTFT 为 X ( e j ω ) X\left( {e^{j\omega } } \right) X(e) , 对 X ( e j ω ) X\left( {e^{j\omega } } \right) X(e) 在一个周期内 [ 0 , 2 π ] \left[ {0,2\pi } \right] [0,2π] 进行 N = 5 N = 5 N=5 点的均匀采样, 得到离散频率 X [ k ] X\left[ k \right] X[k] , 即

  如果 x [ n ] x\left[ n \right] x[n] 取一下两种情况, 试确定 X [ k ] X\left[ k \right] X[k] 进行 DFT反变换之后对应的序列 y [ n ] y\left[ n \right] y[n]

  (1) x [ n ] = { 1 , 2 , 3 , 4 } x\left[ n \right] = \left\{ {1,2,3,4} \right\} x[n]={1,2,3,4} ;
  (2) x [ n ] = { 1 , 2 , 3 , 4 , 5 , 6 , 7 } x\left[ n \right] = \left\{ {1,2,3,4,5,6,7} \right\} x[n]={1,2,3,4,5,6,7}

提示: 根据 X [ k ] X\left[ k \right] X[k] 是对 x [ n ] x\left[ n \right] x[n] 进行 N = 5 N = 5 N=5 点的DFT, 所以它对应的反变换 y [ n ] = D F T − 1 { X [ k ] } y\left[ n \right] = DFT^{ - 1} \left\{ {X\left[ k \right]} \right\} y[n]=DFT1{X[k]} 是对 x [ n ] x\left[ n \right] x[n] 进行 N = 5 N = 5 N=5 的周期延拓后, 在取主值区间,即: y [ n ] = x [ [ k ] ] N = 5 ⋅ R N − 5 [ n ] y\left[ n \right] = x\left[ {\left[ k \right]} \right]_{N = 5} \cdot R_{N - 5} \left[ n \right] y[n]=x[[k]]N=5RN5[n]

3、频谱分析计算量

(1)必做题

  已知序列 x [ n ] x\left[ n \right] x[n] 的数据长度为 310; h [ n ] h\left[ n \right] h[n] 的数据长度 为 24。

  (1) 直接使用(线)卷积计算 x [ n ] ∗ h [ n ] x\left[ n \right] * h\left[ n \right] x[n]h[n] , 给出所需要的实数乘法和实数加法次数;
  (2) 利用基-2的快速傅里叶变换, 完成 x [ n ] , h [ n ] x\left[ n \right],h\left[ n \right] x[n],h[n] 之间的线卷积, 所需要的实数乘法与实数加法次数;
  (3) 比较以上结果, 并得出你的结论。

(2)选做题

  如果序列 x [ n ] x\left[ n \right] x[n] 的长度为 8192. 已知一款单片机每次完成实数乘法和加罚所需要的时间分别为 4.5 μ s \mu s μs 0.5 μ s 0.5\mu s 0.5μs。 如果计算出该序列的DFT, 请估计使用 DFT 公式直接计算,以及使用 FFT 计算所需要的时间。

仅仅根据计算所需要的实数乘法和加法次数来估计时间。 忽略算法其他部分的操作时间。

四、滤波器设计

1、匹配滤波器

  如果使用匹配滤波器 来检测接收信号与发送信号之间的延迟, 那么下面四个信号中哪一个最适合作为发送信号? 请给出理由。

2、滤波器结构图

  • 必做题: (1),(3)
  • 选做题: (2),(4),(5)

  根据以下数字滤波器系统函数, 绘制出滤波器的滤波器结构图。

滤波器系统框图

3、滤波器转换(选做题)

  已知模拟滤波器的传递函数为:

  设采样周期 T = 0.5 s T = 0.5s T=0.5s , 用以下方法将其转换为数字滤波器:

  (1) 脉冲响应不变方法;
  (2) 双线性变换法;

 

02 验作业


一、利用DFT求线圈匝数

  利用 DFT 可以对数据中的周期进行估计。 请大家参考博文通过FFT来计算螺旋线的匝数以及拉普拉斯,帮我看看这个怎么回事呢? 中给出的示例, 利用DFT求取下面图像中,线圈的匝数。

1、线圈图像

  下面是线圈图像。 在处理之前先将线圈图像旋转到水平方向。

▲ 图2.1.1  线圈天线图像

▲ 图2.1.1 线圈天线图像

2、数据处理

  求取图像垂直灰度投影, 可以得到灰度曲线波动曲线。 然后利用DFT求取其中的主要周期分量,根据周期分量所对应的数据便可以得到对应的线圈的匝数。

▲ 图2.1.2  图像垂直灰度投影以及对应的频谱

▲ 图2.1.2 图像垂直灰度投影以及对应的频谱

3、线圈图像

  下面是另外两张线圈图像,可以用于DFT处理图像数据。

▲ 图2.1.3   线圈天线图像

▲ 图2.1.3 线圈天线图像

▲ 图2.1.4  线圈图像

▲ 图2.1.4 线圈图像

二、设计FIR滤波器

  使用窗函数法设计一个线性相位 FIR 低通滤波器, 要求的技术指标为:
  (1) 通带内在 Ω p = 30 π   r a d / s \Omega _p = 30\pi \,rad/s Ωp=30πrad/s 处衰减 δ p ≥ − 3 d B \delta _p \ge - 3dB δp3dB
  (2) 阻带内在 Ω s = 46 π    r a d / s \Omega _s = 46\pi \,\,rad/s Ωs=46πrad/s 处商检 δ s ≤ − 40 d B \delta _s \le - 40dB δs40dB
  (3) 采样周期 T = 0.01 s T = 0.01s T=0.01s

三、匹配滤波器

1、声音信标

  在全国大学生智能车竞赛竞赛中, 声音信标发送出频率线性变化的 Chirp 声音信号, 接受信号通过对比调频无线接收机得到的声音信号与麦克风测量的声音信号,获得信标相对于麦克风的声音延迟,进而可以获得信标的方位。

  下图是在 室外声音信标可行性分析中给出的发送Chirp信号与麦克风接收到的信号。

▲ 图2.2.1 . 发送的Chirp信号与接收到的Chirp信号

▲ 图2.2.1 . 发送的Chirp信号与接收到的Chirp信号

2、实验要求

  在 Chirp信号公式与对离散生成算法之间的差异 给出了生成 Chirp 信号生成的方法,请按照如下指标生成 Chirp 信号数据:

  • 采样频率: f s = 10 k H z f_s = 10kHz fs=10kHz
  • 起始频率: f s t a r t = 250 H z f_{start} = 250Hz fstart=250Hz
  • 停止视频: f s t o p = 2000 H z f_{stop} = 2000Hz fstop=2000Hz
  • 采集数据长度: N = 2048 N = 2048 N=2048

  对数据添加 [ − 1 , 1 ] \left[ { - 1,1} \right] [1,1] 之间的均匀分布的随机噪声, 形成两个带有噪声的 Chirp 信号。 计算它们之间的互相关信号。

▲ 图2.2.2 . Chirp 信号与对应的两个增加有随机信号Chirp信号

▲ 图2.2.2 . Chirp 信号与对应的两个增加有随机信号Chirp信号

  下面是两个带有很大噪声的 Chirp 信号之间互相关的结果。

▲ 图2.2.3 . 两个叠加有随机噪声的Chirp信号互相关结果||上:全部的互相关结果;下:将互相关结果中心展开

▲ 图2.2.3 .两个叠加有随机噪声的Chirp信号互相关结果
上:全部的互相关结果;下:将互相关结果中心展开


■ 相关文献链接:

● 相关图表链接:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卓晴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值