皮尔逊相关分析——代谢组与转录组联合-R语言

数据

转录组数据要与代谢组数据一一对应在这里插入图片描述
在这里插入图片描述
导入Rstudio

dx <- read.csv("dx.csv",header = T,row.names = 1)
gene <- read.csv("gene.csv",header = T,row.names = 1)

转换数据类型

gene1 <- as.matrix(gene)
dx1 <- as.matrix(dx)

就某个基因与代谢物进行相关性分析

cor(dx1[(row.names='4-Pentenoic acid'),],gene1[(row.names='A2ML1'),])
[1] 0.2306677

进行全部代谢物与基因相关性分析
行列转置

gene2 <- t(gene1)
dx2 <- t(dx1)

皮尔逊相关

library(WGCNA)
metaGeneCor.r <- cor(gene2, dx2, method="pearson")
write.csv(metaGeneCor.r,file="GeneCorMeta.csv")

p值

nmeta=ncol(dx) #nmeta为样本数量
metaGeneCor.p <- corPvalueStudent(metaGeneCor.r, nmeta)
write.csv(metaGeneCor.p,file = "MetaCorGene.p.csv") 

热图

library(pheatmap)
pheatmap(metaGeneCor.r,show_rownames = F,show_colnames = F)

想调出少量的数据
在这里插入图片描述

c <-c('RGN','GPI','ALDOA','PFKM','LOC106841113','LOC106828083','PGM1','FBP1','PGM2')
write.table(metaGeneCor.r[row.names=c,colnames="Sedoheptulose 7-phosphate"],file="1.txt",quote=F,col.name=F,row.names=F)

参考:https://blog.csdn.net/ziixiaoshenwang/article/details/115532419?spm=1001.2014.3001.5502

在R语言中进行微生物代谢联合分析时,通常需要处理不同数量和类型的样本数据。以下是一个基本的步骤指南,帮助你在处理不同时进行联合分析: 1. **数据预处理**: - **微生物数据**:通常包括16S rRNA基因测序数据或宏基因数据。需要进行质量控制、特征表构建、标准化等步骤。 - **代谢数据**:包括质谱或核磁共振数据。需要进行峰识别、峰对齐、标准化等步骤。 2. **数据整合**: - 将微生物代谢数据进行匹配,确保每个样本在两个数据集中都有对应的数据。 - 使用R包如`phyloseq`或`metagenomeSeq`来处理微生物数据,使用`xcms`或`MetaboAnalystR`来处理代谢数据。 3. **统计分析和可视化**: - 进行相关性分析(如Spearman或Pearson相关性)来识别微生物和代谢物之间的关系。 - 使用多元统计分析方法,如主成分分析(PCA)、偏最小二乘判别分析(PLS-DA)等,来探索数据中的模式和差异。 - 可视化结果,使用热图、网络图等展示微生物和代谢物之间的关系。 4. **功能富集分析**: - 将微生物数据代谢数据进行关联,进行功能富集分析,识别特定代谢物相关的微生物功能。 以下是一个简单的R代码示例,展示如何进行基本的数据整合和相关性分析: ```r # 安装并加载必要的包 install.packages(c("phyloseq", "MetaboAnalystR", "ggplot2", "corrplot")) library(phyloseq) library(MetaboAnalystR) library(ggplot2) library(corrplot) # 读取微生物数据 microbiome_data <- read.csv("microbiome_data.csv", row.names = 1) taxonomy <- read.csv("taxonomy.csv", row.names = 1) sample_data <- read.csv("sample_data.csv", row.names = 1) # 创建phyloseq对象 OTU = otu_table(as.matrix(microbiome_data), taxa_are_rows = TRUE) TAX = tax_table(as.matrix(taxonomy)) SAMPLE = sample_data(sample_data) physeq <- phyloseq(OTU, TAX, SAMPLE) # 读取代谢数据 metabolome_data <- read.csv("metabolome_data.csv", row.names = 1) # 数据匹配 common_samples <- intersect(rownames(microbiome_data), rownames(metabolome_data)) physeq <- prune_samples(common_samples, physeq) metabolome_data <- metabolome_data[common_samples, ] # 相关性分析 correlation_matrix <- cor(t(otu_table(physeq)), metabolome_data, method = "spearman") # 可视化 corrplot(correlation_matrix, method = "color", type = "upper", tl.cex = 0.7, tl.col = "black") ```
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

紫霄zixiao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值