这次将介绍代谢与转录组联合分析的常用方法,主要包括相关性分析、KEGG通路分析、典型相关性分析等,这里相关性分析是两两代谢物表或者基因表达量之间计算相关性,典型相关是多变量多个代谢物和多个基因一起的两组数据进行降维,可类比于PCA。下面将用一些实际案例来说明这些分析方法。
文章《Comparative transcriptome and metabolome profiling reveal molecular mechanisms underlying OsDRAP1-mediated salt tolerance in rice》中作者基于转录组和代谢组结合过表达基因OsDRAP1研究水稻耐盐,其中联合分析使用的方法便是计算代谢物与基因之间的皮尔逊相关性系数及P值,结合通路发现氨基酸和碳水化合物代谢途径在OsDRAP1介导的耐盐中起着关键的作用。
同样的,在文章《Integrated Analysis of Transcriptomic and Metabolomic Data Reveals the Mechanism by Which LED Light Irradiation Extends the Postharvest Quality of Pak-choi (Brassica campestris L. ssp. chinensis (L.) Makino var. communis Tsen et Lee)》中研究了LED光照对白菜贮藏的影响,对照组为黑暗贮藏的白菜,其中的联合分析也用到了相关性分析以及典型相关性将基因和代谢物关联,最后发现LED光照对于延长白菜保质期关键途径是激活光合作用、诱导硫代葡萄糖苷合成、抑制卟啉与叶绿素代谢途径,下图为光合作用相关的差异代谢物和基因。
前面的联合分析中的转录组均为有参转录组,对于无参转录组一样也可以进行联合并挖掘基因和代谢物之间的关系。在文章《Integrated analysis of the transcriptome and metabolome in young and mature leaves of Ginkgo biloba L.》中研究人员利用代谢组和转录组分析了银杏幼叶和成熟叶,其中转录组为无参转录组,在对差异代谢物进行相关性分析时发现大多数代谢物之间呈正相关,只有丝氨酸与其他代谢物呈负相关,在对差异代谢物和差异基因进行相关性分析时也同样发现丝氨酸与差异基因呈负相关。此外也发现有4个基因和代谢物有较高的相关性,这些可以作为后续的研究。
从上述这些文章中不难发现联合分析主要是依靠相关性和KEGG通路注释信息再结合研究背景来挖掘生物学意义。这里也简单介绍一些常用的分析软件,相关性分析除了之前使用的R包psych,也可以使用R包Hmisc,都可以批量计算相关性系数及P值,热图则有很多工具:R包pheatmap、R包ComplexHeatmap、R包d3heatmap、以及专门可视化相关性的R包corrplot等。相关性网络图或者其他网络图可视化首推cytoscape,调图非常方便也有很多插件,而R包则有igraph、networkD3等。
参考文献:
1. Wang Y, Huang L, Du F, et al. Comparative transcriptome and metabolome profiling reveal molecular mechanisms underlying OsDRAP1-mediated salt tolerance in rice[J]. Scientific Reports, 2021, 11(1): 1-11.
2. Yan Z, Zuo J, Zhou F, et al. Integrated Analysis of Transcriptomic and Metabolomic Data Reveals the Mechanism by Which LED Light Irradiation Extends the Postharvest Quality of Pak-choi (Brassica campestris L. ssp. chinensis (L.) Makino var. communis Tsen et Lee)[J]. Biomolecules, 2020, 10(2): 252.
3. Guo J, Wu Y, Wang G, et al. Integrated analysis of the transcriptome and metabolome in young and mature leaves of Ginkgo biloba L[J]. Industrial Crops and Products, 2020, 143: 111906.