转录组+代谢组联合分析

转录组+代谢组联合分析

简介

转录组是获得生物体内基因表达的重要方法,代谢组是生物体表型的基础和直接体现者。 转录组测序可以得到大量差异表达基因和调控代谢通路,但由于基因与表型之间很难之间关联,导致关键的信号通路难以确定,因此往往达不到预期的研究目的。代谢产物是生物体在内外调控下基因转录的最终结果,是生物体表型的物质基础。
在系统生物学研究时代,生物过程复杂多变,基因调控网络复杂。针对特定的生理、病理等表型进行研究,利用转录组的数据获得大量差异表达的基因,与代谢组检测得到的差异代谢物进行关联分析,从而从原因和结果两个层次对生物体的内在变化进行分析,鉴定关键基因靶点、代谢物及代谢通路,构建核心调控网络,系统全面地解析疾病发生发展的复杂机制,从整体上解释生物学问题。目前,转录组代谢组联合分析已被广泛用于各种疾病研究。
An overview workflow of the comprehensive analysis of metabolomics and transcriptomics in cervical cancer. (Yang K, et al. 2017)
参考文献:
Yang K, et al. A Comprehensive Analysis of Metabolomics and Transcriptomics in Cervical Cancer[J]. Scientific Reports, 2017, 7:43353.

### 使用 R 语言进行转录组代谢整合分析 #### 数据准备 为了实现转录组代谢数据的有效整合,通常需要先对这两类数据分别进行预处理。对于转录组数据而言,这可能涉及读取测序文件、质量控制以及标准化表达量计算;而对于代谢,则需完成峰识别、定量及归一化操作。 ```r library(DESeq2) # 对于 RNA-seq 的差异表达分析 library(metaX) # 针对 LC-MS/MS 类型的非靶向代谢谱型实验设计专用工具箱 ``` #### 典型相关分析 (CCA) 通过典型相关分析可以探索两套多维特征集之间的关系模式,在此场景下即指代基因表达水平同代谢物浓度间的潜在联系。这种方法能够找出最能代表双方变异性的线性合,并使得这些合间具有最大化的协方差[^1]。 ```r # 假设已有经过前处理后的两个数据框 exprs metabo 分别存储着基因表达值代谢产物丰度测量结果 cca_result <- cancor(exprs, metabo) # 查看 CCA 结果摘要信息 summary(cca_result) ``` #### 可视化展示 利用图形手段直观呈现所发现的相关规律有助于加深理解并辅助后续生物学解释工作。热图是一种常用的方式用于表示样本聚类情况下的变量关联强度分布状况。 ```r heatmap(as.matrix(scale(t(exprs))), Colv=NA, Rowv=NA, col=colorRampPalette(c("blue","white","red"))(75), scale="none", margins=c(8,9), cexRow=.6, cexCol=.6) heatmap(as.matrix(scale(metabo)), Colv=NA, Rowv=NA, col=colorRampPalette(c("green","yellow","purple"))(75), scale="none", margins=c(8,9), cexRow=.6, cexCol=.6) ``` #### 生物学意义解析 最后一步是要基于统计模型输出的结果去挖掘背后隐藏的实际生理机制或病理过程。比如可以通过查阅文献来验证某些特定路径上是否存在已知的功能模块受到共同调控的现象。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荞麦agan

您的每一次打赏,都是对我的鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值