无论是希望将AI大模型集成到业务流程中,还是寻求企业客户服务自动化,亦或者是希望创建一个强大的个人学习工具。可能都需要考虑数据安全、灵活度以及更具有可控性的使用和开发基础。值得考虑的一个方案是:将大模型(LLM)私有化并且创建一个好用的LLM WebUI系统。
下面,我们推荐7个出色的开源LLM WebUI 系统。
01.Open WebUI(Ollama WebUI)
https://github.com/open-webui/open-webui
Star:45.7K
开发语言:Python、TypeScript\Svelte
Open WebUI是一个可扩展、功能丰富且用户友好的WebUI,旨在完全离线操作。它支持包括Ollama和OpenAI在内的各种LLM运行容器或者API。
产品特点:
-
直观的界面:受ChatGPT启发的用户友好型聊天
-
响应式设计:在桌面和移动的上实现流畅的性能
-
轻松安装:使用Docker/Kubernetes轻松安装
-
主题定制:个性化与多个主题
-
高亮:增强代码的可读性
-
Markdown LaTeX支持:全面的格式选项
-
本地RAG集成:使用#命令访问聊天文档
-
RAG嵌入模型支持:选择嵌入模型(Ollama/OpenAI)
-
Web浏览:使用#命令集成网站
-
提示预设:使用/命令快速访问
-
RLHF注释:人工反馈的速率消息
-
会话标记:对聊天进行分类,以便于参考
-
模型管理:下载、删除和更新模型
-
GGUF文件上传:从GGUF文件创建Ollama模型
-
多模型支持:切换模型以获得不同的响应
-
多模式支持:包括图像交互
-
模型文件生成器:自定义角色和代理
-
多模型对话:同时利用多个模型
-
协作聊天:使用@ command分组模型对话
-
本地聊天共享:在用户之间共享聊天链接
-
Regeneration聊天历史:访问所有过去的互动
-
存档导入/导出聊天:组织和传输聊天数据
-
语音输入:自动发送语音输入
-
可配置的TTS端点:自定义文本到语音
-
高级参数控制:调节温度,系统提示
-
映像生成集成:本地API和DALL-E选项
-
OpenAI API支持多种API:灵活集成
-
API密钥生成:简化OpenAI库使用
-
外部Ollama服务器连接:连接远程实例
-
Ollama负载平衡:分发请求以提高可靠性
-
多用户管理:用于用户监督的管理面板
-
Webhook集成:新注册的实时通知
-
模型白名单:用户的受控访问
-
可信电子邮件身份验证:增强的安全层
-
RBAC:基于角色的受限权限访问
-
后端反向代理:安全的后端通信
-
多语言支持:i18n国际化
-
持续更新:定期的新功能和改进
02.Text Generation Webui
https://github.com/oobabooga/text-generation-webui
Star:40.5K
开发语言:Python
这是一个基于Gradio的Web UI,用于大语言模型的Web层。
产品特性:
-
在一个UI以及API中支持多个文本生成的后端,包括:Transformers、llama.cpp、ExLlamaV2、TensorRT-LLM、AutoGPTQ、AutoAWQ、HQQ、 AQLMare等
-
兼容OpenAI的API。
-
使用Jinja2模板自动提示格式化。
-
三种聊天模式:instruct、chat-instruct、chat,其中chat-instruct有自动提示模板。
-
可在“聊天记录”菜单之间的对话快速切换。
-
在默认、笔记本选项卡中生成自由格式的文本,而不限于聊天回合。
-
拥有多个采样参数和生成选项,用于支持复杂的文本生成控制。
-
在UI中轻松切换不同型号,无需重新启动。
-
简单的LoRA微调工具。
-
安装在一个独立的installer_files目录中,不会影响系统环境。
-
扩展支持,提供许多内置的或者用户贡献的扩展。
03.Anything LLM
https://github.com/Mintplex-Labs/anything-llm
Star:26.5K
开发语言:JavaScript
AnythingLLM是一个多功能的全栈AI应用程序,可以在与大型语言模型(LLM)聊天期间引用自己的文档或内容作为上下文数据。它专为易用性而设计,提供了一个高度可配置的多用户环境。用户可以选择集成商业的或者开源的LLM,选择向量数据库,并管理访问权限。
该应用程序将文档组织到“工作区”中,这些工作区是容器化的单元,可以在不同的线程之间保持上下文的隔离。
工作区可以共享文档,但也能够为一些重点对话维护隔离的上下文。AnythingLLM可运行在Mac、Windows或者Linux桌面系统上,支持本地或远程执行,使其成为构建自定义、私人ChatGPT的强大工具。
产品特征
-
支持AI Agent定义
-
支持多种模型(包括封闭和开源LLM!)
-
支持多用户实例和Docker版本
-
可在工作空间内安装代理(浏览网页、运行代码等)
-
提供适用于嵌入网站的聊天组件
-
支持多种文档类型(PDF,TXT,DOCX等)
-
简单的聊天用户界面、拖放功能和明确的使用指南。
-
支持100%云部署。
-
可以与所有流行的闭源和开源LLM提供商对接。
-
与其他聊天界面相比,可以用于管理非常大的文档。
-
提供用于自定义集成的API
04.LibreChat
https://github.com/danny-avila/LibreChat
Star:18.9K
开发语言:TypeScript、JavaScript
LibreChat可以作为ChatGPT的私人替代品,在您自己的服务器上运行。
产品特征
-
支持与ChatGPT匹配的UI,包括Dark模式、Streaming和最新更新
-
智能选型:Anthropic(Claude),AWS Bedrock,OpenAI,Azure OpenAI,BingAI,ChatGPT,Google Vertex AI,插件,助手API(包括Azure助手)
-
两者兼容远程和本地AI服务:Groq、Ollama、Cohere、Mistral AI、Apple MLX、koboldcpp、OpenRouter、together.ai、Perplexity、ShuttleAI等
-
生成式UI,代码工件:在聊天中创建React、HTML代码和Mermaid图表
-
创建、保存和共享自定义预设
-
在AI端点和预设之间切换,聊天中
-
使用对话分支编辑、重新提交和继续消息
-
用于高级上下文控制的会话
-
多模式聊天:
-
可通过OpenAI Assistant API️
-
非OpenAI代理在积极开发中
-
使用Claude 3、GPT-4(包括gpt-4o和gpt-4o-mini)和Gemini Vision软件上传和分析图像
-
使用自定义端点,OpenAI,Azure,Anthropic,Google与文件聊天。🗃️
-
具有文件、代码解释器、工具和API操作的高级代理🔦
-
多语言用户界面:
-
English,中文,Deutsch,Español,Français,意大利语,Polski,巴西葡萄牙语,
-
Русский, 日本語, Svenska, 한국어, Tiếng Việt, 繁體中文, العربية, Türkçe, Nederlands, עברית
-
可定制的下拉界面:适应高级用户和新手
-
验证您的电子邮件以确保安全访问
-
语音到文本和文本到语音的魔术免提聊天
-
自动发送和播放音频
-
支持OpenAI、Azure OpenAI和Elevenlabs
-
从LibreChat,ChatGPT,Chatbot UI导入对话
-
导出对话为截图,markdown,文本,json
-
搜索所有消息/对话
-
插件,包括Web访问、使用DALL-E-3生成图像等
-
使用审核和令牌支出工具的多用户安全身份验证
-
️配置代理,反向代理,Docker,和许多部署选项:完全本地使用或部署在云上
05.Web LLM
https://github.com/mlc-ai/web-llm
Star:13.6K
开发语言:TypeScript
WebLLM是一个高性能的浏览器内LLM推理引擎,通过硬件加速将语言模型推理直接带到Web浏览器上。一切都在浏览器内运行,没有服务器支持,并通过WebGPU加速。WebLLM完全兼容OpenAI API。也就是说,可以在本地任何开源模型上使用相同的OpenAI API,其功能包括流式传输,JSON模式,函数调用(function-calling,简写)等。
产品特征:
-
浏览器内推理:WebLLM是一个高性能的浏览器内语言模型推理引擎,它利用WebGPU进行硬件加速,直接在Web浏览器内实现强大的LLM操作,而无需服务器端处理。
-
兼容OpenAI API:使用OpenAI API将您的应用与WebLLM无缝集成,并提供流、JSON模式、logit级别控制、种子等功能。
-
结构化JSON生成:WebLLM支持最先进的JSON模式结构化生成,在模型库的WebAssembly部分实现,以获得最佳性能。检查HuggingFace上的WebLLM JSON Playground,尝试使用自定义JSON模式生成JSON输出。
-
丰富的模型支持:WebLLM支持一系列原生大模型,包括:Llama 3,Phi 3,Gemma,Mistral,Qwen(通义问)等,使其成为各种AI任务的通用工具。有关完整的支持型号列表,请选中模型。
-
自定义模型集成:轻松集成和部署MLC格式的自定义模型,使您能够根据特定需求和场景调整WebLLM,增强模型部署的灵活性。
-
即插即用集成:使用NPM和Yarn等包管理器或直接通过CDN将WebLLM轻松集成到您的项目中,并提供全面的示例和用于连接UI组件的模块化设计。
-
流式传输与实时交互:支持流式聊天完成,允许实时输出生成,增强了聊天机器人和虚拟助手等交互式应用程序。
-
支持Web Worker& Service Worker:通过将计算卸载到独立的工作线程或服务工作线程,优化UI性能并有效管理模型的生命周期。
-
支持Chrome扩展:使用WebLLM通过自定义Chrome扩展程序扩展Web浏览器的功能,并提供构建基本和高级扩展程序的示例。
06.OpenLLM
https://github.com/bentoml/OpenLLM
Star:10K
开发语言:Python
OpenLLM是一个可以在云中运行开源大语言模型(LLM)的工具,如:Llama,Qwen和Phi等,也可以兼容OpenAI的API接入。它支持使用Docker、Kubernetes和BentoCloud简化模型的部署过程。
OpenLLM支持多种模型,并提供友好的用户界面,提供内置的聊天UI。它还可以与BentoML集成,用于企业级AI推理和部署。此外,用户可以将模型贡献到其存储库中,或者在自己的基础设施上部署自定义模型。
使用以下命令进行安装:
pip install openllm # or pip3 install openllm
openllm hello
07.LoLLMs
https://github.com/ParisNeo/lollms-webui
Star:4.3K
开发语言:JavaScript/Vue 、Python
LoLLMS WebUI(Lord of Large Language Multimodal Systems)是一个多功能一体化平台,可访问各种任务类型的AI模型,例如:写作、编码、图像生成、音乐创作等。它支持500多个专家模型和2500个跨不同领域的微调模型。
用户可以选择根据特定需求量身定制的模型,无论是编码帮助、医疗建议、法律的指导、创意故事还是娱乐。
该平台的设计考虑到了易用性,提供了一个友好的用户界面,具有明亮和暗黑模式。LoLLMS可以用于实现增强电子邮件、代码调试、解决问题,甚至提供如笑声机器人、创意故事生成器、和个性化音乐生成之类的有趣功能。
它将生产力工具和娱乐结合在一个界面中,使其成为满足各种专业需求的多功能工具。
产品特征
-
为您的任务选择您喜欢模型和个性化配置
-
增强您的电子邮件、论文、代码调试、思想组织等
-
探索各种功能,如:搜索、数据组织、图像生成和音乐生成
-
易于使用的用户界面,具有亮暗模式选项
-
与GitHub存储库集成,便于访问
-
可自定义向导信息
-
生成的答案的拇指向上/向下评级
-
复制、编辑和删除邮件
-
用于讨论的本地数据库存储
-
搜索、导出和删除多个讨论
-
支持基于稳定扩散的图像/视频生成
-
支持基于musicgen的音乐生成
-
通过Lollms节点和花瓣支持多代对等网络。
-
支持Docker、conda和手动虚拟环境设置
-
支持LM Studio作为后端
-
支持Ollama作为后端
-
支持vllm作为后端
-
支持根据任务快速路由到对应的模型
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。