(19)正投影变换(三视图)

本文介绍了三维坐标系中正投影的基本概念及其在不同坐标平面上的变换矩阵,包括V面投影(主视图)、H面投影(俯视图)和W面投影(侧视图)。这些变换对于理解和应用三维图形的二维表示至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在工程上将三维坐标系OXYZ中的三个坐标平面分别设为H面(XOY平面)、V面(XOZ平面)、W面(YOZ平面)。

                      

所谓正投影就是三维图形上各点分别向某一坐标平面作垂线,其垂足便称为各个三维点的投影点,将所有投影点按原三维图形中点与点之间的对应关系一一连起来便得到了一平面图形,该平面图形就称为三维图形在该坐标平面上的正投影。

          

V面投影(主视图)

物体在XOZ平面上的正投影,坐标y=0,坐标x和z保持不变,其变换矩阵为:

                         

即:[x  y  z   1]*TV  = [x   0   z   1] = [x’   y’   z’   1]


H面投影(俯视图)

先将物体向XOY平面作正投影(即坐标z=0),然后将得到的投影绕X轴顺时针旋转90度,使其与V面共面,再沿-Z方向平移一段距离n,以使H面投影和V面投影之间保持一段距离。变换矩阵为:

     

即:[x   y   z   1]*TH  = [x   0   –y–n   1] = [x’   y’   z’   1]


W面投影(侧视图)

先将物体向YOZ平面作正投影(即坐标x=0),然后绕Z轴逆时针旋转90度,使其与V面共面,为保证与V面投影有一段距离,再沿-X方向平移一段距离k,变换矩阵为:

     

即:[x    y   z   1]*TW  =  [-y-k    0    z   1] = [x’   y’   z’   1] 




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值